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Abstract: Agriculture is the most important sector that is consuming water resources. In the context of
global water scarcity, how to use limited water resources to improve water use efficiency in agriculture
or achieve maximum crop yield and fruit quality is of great significance for ensuring food and water
security. Optimizing irrigation schedules is an effective measure to improve water use efficiency,
where crop models also play an important role. However, there is little research summarizing
the optimization of irrigation schedules based on crop models. This study provides a systematic
review on how to optimize irrigation schedules based on crop models and simulation–optimization
models. When optimizing irrigation schedules based on crop models, the selected models are
usually mechanistic agro-hydrological models. Irrigation scenarios and optimization objectives
are mainly focused on both crop and water aspects, such as maximizing crop yield, fruit quality,
water productivity, and irrigation water productivity. Minimizing crop water consumption and total
irrigation amounts serve as optimization objectives, and irrigation quantity, irrigation frequency,
and irrigation interval serve as decision variables. In saline areas or low fertilizer utilization areas,
the optimization objectives and decision variables also involve some indicators related to salt and
nitrogen, such as the maximum desalination rate, minimum salt content, fertilizer utilization efficiency,
nitrogen fertilizer productivity, nitrogen fertilizer utilization efficiency, nitrogen leaching rate, which
serve as the optimization objectives, and the irrigation water salinity, or fertilization schedules serve
as the decision variables. When optimizing irrigation schedules based on simulation–optimization
models, the models have mainly been upgraded from water-production function to crop mechanism
models. In addition, optimization algorithms have been upgraded from traditional optimization
techniques to intelligent optimization algorithms. Decision-making techniques are used to make
decisions on optimization results. In addition, the spatial scale for the optimization problem of
irrigation schedules was developed from fields to regions, and the time scale was developed from
the growth stage, beginning with months, and shortening to ten days, then to a day, and then to an
hour. This study also provides a detailed introduction to widely used optimization algorithms, such
as genetic algorithms, as well as decision techniques. At the same time, it is proposed that the future
should focus on improving crop models and analyzing uncertainty in research on irrigation schedule
optimization, which is of great significance for the precise regulation of irrigation schedules.

Keywords: irrigation schedule; crop model; optimization; simulation–optimization model

1. Introduction

Water resources are a key factor in promoting sustainable socioeconomic development,
as well as an important strategic resource for ensuring food security and ecological health.
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Water scarcity is a global problem currently faced around the world, and agriculture is the
most important sector that is consuming water resources. Agricultural water consumption
accounts for 70% of the total water consumption globally, and water use efficiency is at a
relatively low level [1]. The expected growth rate of the world population has led to a con-
tinuous increase in the demand for food, and the demand for agricultural irrigation water
has also been increasing year by year [2]. Improving water use efficiency in agriculture is a
key way to ensure both water resources and food security.

Optimizing irrigation schedules is an important measure to improve agricultural water
use efficiency [3]. The crop irrigation schedule mainly includes the irrigation frequency,
irrigation date, single irrigation quota, and total irrigation quota. A moderate water
deficit could improve water use efficiency and fruit quality, while could not significantly
decreasing crop yield [4–6]. Therefore, when water resources are insufficient and only
deficit irrigation can be used, how to allocate the limited irrigation water reasonably in
spaces (different regions, different crops) and time (different growth stages of crops) to
achieve the highest yield or benefit, or minimize the loss of crop yield caused by this water
shortage, is the core idea behind the optimization of irrigation schedules [7].

Optimization methods for irrigation schedules mainly include linear programming,
nonlinear programming, and dynamic programming [8]. In addition, intelligent evolution-
ary algorithms such as genetic algorithms (GAs), simulated annealing (SA), and particle
swarm optimization (PSO) [9,10] have also been widely applied due to the increasingly
complex problems associated with the optimization and allocation of water resources.
These methods simplify the evapotranspiration processes of farmlands under different
irrigation schedules and their impacts on crop yield, making it difficult to objectively reflect
on the yield changes under the different irrigation conditions.

The responses in crop production to irrigation schedules can be studied through a
combination of field experiments and crop models. Field experiments are limited by factors
such as the limited number of experimental variables and high costs, making it difficult to
evaluate the crop growth and field water balance under various irrigation scenarios [11].
Crop models can overcome the influence of these limiting factors. They can serve as a tool to
simulate crop growth, yield formation, and fruit quality under different field management
schemes, effectively supplementing the shortcomings of field experiments in terms of
manpower, time, space, economy, and resources [12].

Simulation models for crop growth can simulate the hydrological processes of farm-
lands and changes in crop yield under different irrigation conditions and can find the
optimal solution through optimization methods [13]. The combination of both simulation
models and optimization methods provides an effective way to optimize crop irrigation
schedules [14,15]. The objective of this study is to (1) review how to optimize irrigation
schedules based on both crop models and simulation–optimization models, (2) summarize
the improvements in optimization methods for irrigation scheduling optimization, and
(3) analyze the existing problems and challenges, propose future research priorities, and
provide both reference and direction for further research on irrigation schedule optimization.

2. Optimization of Irrigation Schedules Based on Crop Models

The optimization of irrigation schedules based on crop models can be achieved by the
combination of field experiments and crop models [16]. The specific steps involved in the
optimization of irrigation schedules based on crop models are as follows: firstly, based on
the field experimental data, verify the applicability of the crop models in simulating the
dynamics of the soil, water, heat, salt, fertilizer, crop growth, yield, fruit quality parameters,
and water consumption under both different irrigation conditions and various agricultural
management measures; secondly, use the validated crop models to comprehensively evalu-
ate the effects of the various irrigation scenarios on water consumption, crop productivity
and fruit quality; and finally, determine the optimal irrigation schedules under the given
objectives. The specific process of irrigation schedule optimization based on crop models is
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shown in Figure 1. The setting of the irrigation scenarios, the setting of the optimization
objectives, and the selection of the crop models will vary with the needs of the users.
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2.1. Irrigation Scenarios

The optimization of irrigation schedules based on crop models usually involves
manually inputting pre-set irrigation scenarios by users to explore the crop production
situation under various irrigation scenarios. Irrigation scenarios usually reach several to
tens of thousands of types, typically include an irrigation quota, irrigation frequency, and
irrigation time, or a combination of two or more of these factors [17,18]. Precipitation can
affect the decision-making process for irrigation schedules. Researchers make decisions on
irrigation schedules for different hydrological years. The hydrological year is determined
by selecting years with precipitation assurance rates of 25%, 50%, and 75% as typical
representative years for wet, normal, and dry years, based on the long-term sequence data
of the study area [1]. It can also be determined by the drought index with the values of
>0.35, −0.35~0.35, and <−0.35 for wet, normal, and dry years [17]. Multiple upper and
lower irrigation limits or combinations of the two can also be set at the different stages of
crop growth, while simultaneously considering different soil textures [19,20]. In addition,
the sensitivity of the crops to water at each growth stage is also determined by performing
deficit irrigation at the different growth stages of the crops, while conducting sufficient
irrigation at other growth stages [21]. Previous studies indicated that the seedling stage
of maize was not sensitive to a water deficit, and the male ear stage, silk emergence stage,
grain filling stage for maize were the most susceptible to water stress, which could affect
the quality and quantity of the crop yield [22].

In areas where freshwater resources are scarce and irrigation sources rely on under-
ground brackish or saline water, crop models were used to seek a suitable level of salinity
for irrigation water, or appropriate interaction measures between both irrigation quantity
and irrigation water salinity [23]. In saline areas, the appropriate range between the irriga-
tion quotas and irrigation water salinity should be adjusted with the degree of salinization
(i.e., initial soil salinity) [24,25]. In addition, leaching during the nongrowth stages of crops
is considered an effective measure of salt leaching. For example, Lin et al. [26] used the
SHAW model to explore a strategy of combined winter and spring irrigations for salt leach-
ing suitable for cotton growth in Xinjiang, China. At present, in addition to water scarcity,
the low efficiency of fertilization in arid regions around the world is also an important issue
affecting crop production and fruit quality [27,28]. Seeking suitable water and fertilizer
schedules is an important way to ensure food security. Therefore, the exploration of the
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optimal combination of irrigation schedules and fertilization amounts by crop models is
also a hot research topic [16,29].

2.2. Optimization Objectives

The optimization objectives are generally to maximize water productivity, irrigation
water productivity, crop yield, and fruit quality, while minimizing crop water consumption
and total irrigation amount [30,31]. In arid areas with water scarcity, users usually consider
two or more objectives associated with both water and crop simultaneously, and there
may be conflicting outcomes between multiple objectives. For example, as the irrigation
amount is reduced, the soil water storage decreases, which intensifies soil water stress
and leads to a reduction in crop yield. This indicates that the objective of maximizing
the crop yield is contradictory to the objective of minimizing the irrigation amount [13].
Therefore, balancing two or more optimal objectives is a very difficult problem. Previous
studies showed that, within a certain range of irrigation amounts, crop yields increased
rapidly with the increase in irrigation amounts, and with further increases in irrigation
amounts, the crop yield either increased slowly or decreased [32,33]. That is, when the
irrigation amount exceeded a certain range, the crop yield was limited by other factors,
such as the crop varieties or climate conditions, and the potential for a yield increase was
small [34]. A moderate water deficit could significantly increase fruit quality parameters,
such as soluble solids, sugar content, sugar acid ratio, carotenoids, and vitamin C [35,36].
For water productivity, it first stabilized at a certain value with an increase in irrigation
amount and then decreased [24]. When determining the optimal irrigation schedules,
the statistical analysis was usually conducted based on the simulation scenario results,
such as establishing the correlation between the various objectives and decision variables,
and then determining the optimal irrigation schedules [17,32,34]. However, there were
also studies that coupled crop models with multi-objective optimization decision-making
methods, such as the entropy method, to seek the optimal irrigation schedules [37]. The
optimization results of the irrigation schedules might vary with the objectives set by the
users. For example, Yu et al. [24] proposed that when the objective was to maximize water
productivity, the recommended total irrigation amount was 275–300 mm for the arid region
of Northwest China, with an annual average rainfall of 45.7 mm and a pan evaporation of
2500 mm. When the objective was to find a balance between water use and crop production,
it was recommended to control the irrigation amount at around 300 mm. If the objective
was to increase crop yield, further increases in the irrigation amount can be employed.

In saline areas, in addition to the objectives of both water and crop, the maximum
desalination rate and the minimum salt content in the soil layer of the root zone can also be
included as additional objectives [11]. The objective of soil salt content is usually achieved
by adjusting the irrigation schedules during the crop growth periods or by leaching salt
during the fallow periods [38]. Lin et al. [26] identified the optimal strategy of combined
winter and spring irrigations for salt leaching in severely saline cotton fields in southern
Xinjiang, China, with the objectives of achieving soil water, heat, and salt conditions that
are suitable for the emergence of cotton seedlings, as well as the desalination rate and
cotton emergence rate. Zeng et al. [39] proposed an optimal irrigation schedule for the
Hetao Irrigation District in Inner Mongolia, China, with the objectives of increasing the
soil moisture content and accelerating salt leaching. In areas with low fertilizer utilization
efficiency, the nitrogen fertilizer productivity, nitrogen fertilizer utilization efficiency, and
nitrogen leaching rate were usually included together with the water and crop production
as the optimization objectives [16,40].

2.3. Crop Models

Crop models are powerful tools for evaluating the relationship between crop yield,
fruit quality, and water use [41]. The crop models are usually strong mechanism models
that consider the impact of natural environmental conditions on crop physiological growth,
such as weather conditions, including solar radiation, air temperature, humidity, and wind



Water 2024, 16, 2545 5 of 17

speed, and soil environment conditions, including soil water, heat, and nutrients [42,43].
When optimizing irrigation schedules, crop models that can be used to reflect the relation-
ship between crop yield and water use include the following: WAVES (WAter Vegetation
Energy and Solute) [24], AquaCrop [34], SWAP (Soil–Water–Atmosphere–Plant) [23], HY-
DRUS [44], DNDC (Denitrification–Decomposition) [45], DSSAT (Decision Support System
for Agrotechnology Transfer) [46], and RZWQM2 (Root Zone Water Quality model 2) [21].
They are often used for optimizing water and nitrogen schedules or regulating water
and salt, because of their good performance as crop models for elucidating the salt and
nitrogen transport processes in the soil and the crop growth processes under different
agricultural management measures. The model features for some of these commonly used
models are shown in Table 1 for the convenience of users who are involved in model
selection. Crop models that can be used to reflect the relationship between the fruit quality
and water use mainly include the “virtual fruit” [47], QualiTree [48], SUGAR [49], and
TOM-SUGAR models [50]. They have been widely applied in crops such as grapes [51],
blueberries [52], tomatoes [53], and pears [54] to simulate the dynamics of fruit sugar con-
tent, dynamics of water and carbon flux in plants, and vegetative growth under different
water conditions [52,55].

Table 1. Comparison of model features for some commonly used models.

Model Name Driving Factors Modules Crop Types Application Aspects

AquaCrop Soil water
Meteorological module, Crop
module, Soil module (water),
Management module

Maize, wheat, barley,
cotton, sunflower,
potato, rice and other
herbaceous crops, fruit
trees, vines

Biomass and yield
simulation [56]; Optimization
of sowing dates [57];
Optimization of irrigation
measures [57]; Climate
change assessment [58]

SWAP Soil water

Meteorological module, Crop
module, Soil module (water,
solute, heat),
Management module

Annual crops such as
summer maize, winter
wheat, spring barley,
rice, soybean,
sunflower

Yield and biomass
prediction [59]; Water and salt
transport [59];
Remote-sensing
assimilation [60]; irrigation
optimization [61]

APSIM Soil salt

Meteorological module, Crop
module, Soil module (water
balance, nitrogen cycle, surface
organic matter, soil
phosphorus), Management
module, Animal module
(cattle, sheep)

Beans, maize, barley,
wheat, rapeseed, cotton,
rice, peanut

Biomass and yield
simulation [62]; Crop
management; Climate change
assessment [63]; Soil water
and nitrogen processes [64,65];
The interaction between
genes, management, and
environment [66]

DSSAT Photosynthesis

Meteorological module, Crop
module, Soil module (water,
organic matter, nitrogen cycle,
inorganic nitrogen,
phosphorus, potassium),
Soil–crop–atmosphere module,
Management module

Wheat, rice,
maize, legumes,
perennial plants

Biomass and yield
prediction [67]; Irrigation,
fertilization, and pesticide
management [68]; Dynamic
changes of carbon and
nitrogen [68]; Climate risk
assessment [69]

RZWQM2 Soil water
and salt

Meteorological module, Crop
module, Soil water module,
Soil chemical processes,
Nitrogen cycling module,
Carbon cycling module,
Insecticide module,
Cultivation module

Maize, wheat,
soybean, potato, alfalfa,
grass, trees

Crop productivity
assessment [70]; Optimization
of irrigation and
fertilization [19]; Dynamic
monitoring of soil water and
nitrogen [71]; Chemical
simulation of insecticides [72]
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Before making decisions on irrigation schedules based on crop models, it is necessary
to determine a set of crop and soil parameters suitable for the study area based on experi-
mental data, that is, localizing the model parameters. The crop models mostly have the
characteristics of multiple-input parameters, along with the strong spatiotemporal variabil-
ity of soil and crop parameters and the significant uncertainty of model parameters. The
traditional method of “trial and error” has been used to debug these model parameters [73].
This method requires the subjective debugging of the input parameters based on the re-
searcher’s own knowledge and understanding of the models. It is not only time-consuming
and laborious, but also the simulation accuracy of the models is not very satisfactory [74].
On this basis, sensitivity analysis can be performed for the model parameters, and then
only the parameters that have a significant impact on the model-output results need to be
selected for calibration and validation, while the nonsensitive parameters in the model are
briefly processed [75]. In addition, the calibration methods of the model parameters can
also include a parameter calibration based on statistical theory, such as the least squares
method [76] and the Markov Chain Monte Carlo (MCMC) method [77], as well as intelligent
optimization algorithms such as the Genetic Algorithm (GA) [78], Simulated Annealing
(SA) [9], and Particle Swarm Optimization (PSO) [10]. These methods have been widely
applied in many agricultural simulation models, such as the WOFOST [79], DNDC [80],
and AquaCrop models [81].

3. Optimization of Irrigation Schedules Based on Simulation–Optimization Models

The optimization of irrigation schedules based on simulation–optimization models
is based on the water balance model of the farmland and the dynamic water production
function model, or the crop growth model. These models can reflect the evapotranspiration
process of the farmland under various irrigation schedules, and their impacts on crop yield
and fruit quality. After validation of the models, they were combined with optimization
techniques to obtain specific irrigation schedules.

3.1. Optimization of Irrigation Schedules Based on Water Balance–Water Production
Function–Optimization Algorithm

The optimization of the irrigation schedules based on the water balance–water produc-
tion function–optimization algorithm included two parts: simulation of the farmland water
balance and crop yield and the optimization of irrigation schedules. The field water-balance
model is a conceptual model that determines the changes in soil moisture based on the
input and output of soil moisture during a certain period [1]. The calculation model of
crop yield usually uses crop water-production functions, which refer to the quantitative
relationship between the crop yield and water input or water consumption during crop
growth and development [82]. It could reflect the ability of crops to use water to produce
dry matter [82]. The specific steps of the optimization of the irrigation schedules based
on water balance–water production function–optimization algorithm are as follows: at
the beginning, the dynamic process of crop evapotranspiration under a certain irrigation
condition was first simulated through the farmland water balance; then the relative yield
was estimated using the crop water-production function and the cumulative function of
water sensitivity index; and finally, optimization methods were used to determine the
irrigation quota, irrigation date, and the irrigation frequency required to maximize the
relative yield/benefit.

There are many factors that affect the water-production function model, mainly in-
cluding the crop types, soil types, irrigation methods, irrigation water quality, climate
conditions, and field management measures [83]. The water-production function model for
a specific crop in a specific region needs to be determined through years of experimentation.
At present, there are two main types of mature water-production function models: additive
models, including the Blank [84], Stewart [85], and Singh models [86], and multiplicative
models, including the Jensen [87], Minhas [88], and Rao models [89].



Water 2024, 16, 2545 7 of 17

During the processes of irrigation schedule optimization, the Jensen model is com-
monly used to reveal the relationship between crop yield and water consumption. When
combining the Jensen model with the optimization methods for irrigation schedule opti-
mization, the optimization methods initially used were 0–1 linear programming [90] and
simplex search method (nonlinear programming) [91]. These optimization methods were
local search methods, and if the initial value selection was unreasonable, a local optimal
solution could be obtained. Usually, the decision variable is set as whether to irrigate
on a certain day or the irrigation date, and the maximum relative yield is used as the
optimization objective. To obtain the global optimal solution, a globally searchable genetic
algorithm has been proposed to determine the optimal irrigation schedules [7]. The decision
variables, constraints, and optimization objectives were diverse. Usually, irrigation date
and irrigation water amount were used as decision variables, and the maximum relative
crop yield and the minimum total irrigation amount throughout the entire crop growth
period were used as optimization objectives, and NSGA-II (an improved Nondominated
Sorting Genetic Algorithm) was used for the optimization solution [14,92–95]. To make the
optimized irrigation schedules more universal, Wu et al. [96] considered the interannual
variations in rainfall and established an optimization model for irrigation scheduling based
on the multi-year rainfall data and proved its strong applicability.

In addition to the Jensen model, other water-production functions have also been
used for optimizing irrigation schedules. Li [97] believed that the Blank and Stewart
models were also suitable for evaluating the relationship between crop yield and crop
water consumption for pumpkin under drip irrigation conditions with film mulching
in the Hexi Oasis area of China. Even the Stewart model was more effective than the
Jensen model, and the optimal irrigation strategy was proposed based on the Stewart
water-production function and TOPSIS (Technique for Order Preferences by Similarity to
an Ideal Solution). Li et al. [98] also determined that the Jensen and Stewart models were
applicable for revealing the relationship between crop yield and water consumption in
cold and arid environments. In addition, empirical crop water-production functions were
also determined through experiments, such as the quadratic relationship between the crop
yield and the water consumption or irrigation amount [1,99].

Considering the importance of evaluating fruit quality, a water–fruit quality model
was developed to simulate the response of fruit quality parameters to water using the
water-production function for reference, including additive, multiplicative, and exponential
models [100,101]. The results showed that the multiplicative model was suitable for
simulating the relationships between soluble solids, reducing sugars, sugar–acid ratio,
fruit hardness, and water deficit for tomato fruits [100]. However, the additive model was
selected for the relationships between organic acids, vitamin C color index, comprehensive
quality index, and water deficit [100]. Models for the optimization of crop irrigation
scheduling were also established based on the water-production function, water–fruit
quality models, and NSGA-II to obtain the optimal irrigation schedules for cash crops. This
can further improve water use efficiency, crop yield, and fruit quality [102].

3.2. Optimization of Irrigation Schedules Based on Crop Model-Optimization Algorithm

When optimizing irrigation schedules based on the crop model-optimization algo-
rithm, the first step is to validate the crop model. Subsequently, the crop model is coupled
with the optimization algorithm to construct an irrigation schedule optimization model.
Then, the optimal solution, set based on specific objectives, is sought. Finally, decision-
making methods are used to make decisions on the optimization results. The crop models
are usually agro-hydrological models that can simulate crop growth and soil water, heat,
nitrogen, and salt processes. They generally have complex calculation processes and high
nonlinearity [81]. Their computational complexity is much higher than that of the crop
water production functions, which could result in high computational costs for these opti-
mization solutions [81]. In addition, the crop models are generally packaged software that
is difficult to split and requires specific input and output file formats [13]. Traditional opti-
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mization methods of irrigation schedules are not applicable, and evolutionary algorithms,
mainly genetic algorithms, are usually used for both optimization and solution.

The AquaCrop model is the most widely used model among the many models for
optimizing irrigation schedules based on the crop model-optimization algorithm, due to
its advantages such as its simple structure, fewer required parameters, low computational
complexity, and reasonable accuracy [34]. A flow chart of an irrigation schedule optimiza-
tion based on the AquaCrop optimization algorithm is shown in Figure 2. Song et al. [13]
combined the AquaCrop model with the NSGA-II model using MATLAB and constructed a
multi-objective simulation–optimization model for irrigation schedules based on measured
data from spring wheat fields in the arid region of Northwest China. In Song et al. [13], the
optimization objectives were a maximum yield and minimum irrigation amount, and the
efficiency coefficient method was used to make decisions on the optimization results. A
simulation–optimization model coupling AquaCrop with NSGA-III using Python was also
developed and the TOPSIS method was used for decision-making based on the Pareto opti-
mal solution, which was generated by a multi-objective optimization from Lyu et al. [103].
In the study, four objectives were considered, i.e., maximizing crop yield, minimizing
irrigation amount, maximizing irrigation water productivity, and maximizing water use
efficiency [103]. Then, Wang [104] further coupled the groundwater numerical model
MODFLOW with the model from Lyu et al. [103] to evaluate the impact of irrigation on the
groundwater level and determined the optimal irrigation schedules for the objectives of
groundwater level variation and crop yield. In addition to the AquaCrop model, the DSSAT
model was also combined with a genetic algorithm to determine an optimal irrigation and
fertilization plan for a maize field with drip irrigation in the Tengger Desert, China, and a
maize field with surface irrigation in Shandong, China [105].

Water 2024, 16, x FOR PEER REVIEW 8 of 18 
 

 

with the optimization algorithm to construct an irrigation schedule optimization model. 
Then, the optimal solution, set based on specific objectives, is sought. Finally, decision-
making methods are used to make decisions on the optimization results. The crop models 
are usually agro-hydrological models that can simulate crop growth and soil water, heat, 
nitrogen, and salt processes. They generally have complex calculation processes and high 
nonlinearity [81]. Their computational complexity is much higher than that of the crop 
water production functions, which could result in high computational costs for these op-
timization solutions [81]. In addition, the crop models are generally packaged software 
that is difficult to split and requires specific input and output file formats [13]. Traditional 
optimization methods of irrigation schedules are not applicable, and evolutionary algo-
rithms, mainly genetic algorithms, are usually used for both optimization and solution. 

The AquaCrop model is the most widely used model among the many models for 
optimizing irrigation schedules based on the crop model-optimization algorithm, due to 
its advantages such as its simple structure, fewer required parameters, low computational 
complexity, and reasonable accuracy [34]. A flow chart of an irrigation schedule optimi-
zation based on the AquaCrop optimization algorithm is shown in Figure 2. Song et al. 
[13] combined the AquaCrop model with the NSGA-II model using MATLAB and con-
structed a multi-objective simulation–optimization model for irrigation schedules based 
on measured data from spring wheat fields in the arid region of Northwest China. In Song 
et al. [13], the optimization objectives were a maximum yield and minimum irrigation 
amount, and the efficiency coefficient method was used to make decisions on the optimi-
zation results. A simulation–optimization model coupling AquaCrop with NSGA-III us-
ing Python was also developed and the TOPSIS method was used for decision-making 
based on the Pareto optimal solution, which was generated by a multi-objective optimiza-
tion from Lyu et al. [103]. In the study, four objectives were considered, i.e., maximizing 
crop yield, minimizing irrigation amount, maximizing irrigation water productivity, and 
maximizing water use efficiency [103]. Then, Wang [104] further coupled the groundwater 
numerical model MODFLOW with the model from Lyu et al. [103] to evaluate the impact 
of irrigation on the groundwater level and determined the optimal irrigation schedules 
for the objectives of groundwater level variation and crop yield. In addition to the Aqua-
Crop model, the DSSAT model was also combined with a genetic algorithm to determine 
an optimal irrigation and fertilization plan for a maize field with drip irrigation in the 
Tengger Desert, China, and a maize field with surface irrigation in Shandong, China [105]. 

 
Figure 2. Flow chart of irrigation schedule optimization based on AquaCrop optimization algo-
rithms. 

Figure 2. Flow chart of irrigation schedule optimization based on AquaCrop optimization algorithms.

Fertilizer is one of the key factors in agricultural management, in addition to the water
factor, and appropriate fertilization management has a direct impact on the economic and
ecological benefits associated with agriculture. When optimizing irrigation schedules based
on the crop model-optimization algorithm, it is usually accompanied by either fertilization
management or nitrogen loss. For example, Wu et al. [106] modified the AquaCrop model
by introducing the aboveground actual nitrogen concentration, critical nitrogen concen-
tration, and minimum nitrogen concentration to simulate the evapotranspiration of maize
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under nitrogen stress in Northwest China. Then, the optimal solution was determined,
with the objectives of maximizing crop yield and water use efficiency, based on the NSGA-II
algorithm. Decisions were made using the TOPSIS method, and the optimal irrigation and
fertilization strategy was obtained. Ma et al. [107] established a simulation–optimization
model for the irrigation schedules of rice based on the AquaCrop model and the NSGA-II
algorithm. A stable and efficient irrigation strategy for both yield and pollution control,
suitable for different hydrological years, was proposed, with the objectives of a maximum
yield, minimum nitrogen and phosphorus loss, and minimum irrigation frequency.

4. Improvement of Irrigation Schedule Optimization Methods
4.1. Optimization Solution Method

As the optimization objectives of irrigation schedules shifted from a single objective
to multiple objectives, and crop models shifted from a simple water-production function
to agro-hydrological models, the optimization methods of irrigation schedules have also
evolved from traditional linear programming, nonlinear programming, and dynamic pro-
gramming to an evolutionary algorithm. A comparison of the main optimization methods
for irrigation schedules is shown in Table 2. The NSGA-II algorithm is currently one of the
most popular multi-objective evolutionary algorithms, which was proposed based on the
NSGA (Nondominated Sorting Genetic Algorithm) [108]. The NSGA, proposed in 1994, is
a genetic algorithm based on the Pareto optimal concept, which layers each individual ac-
cording to their dominant and nondominant relationships [109]. Then, selection operations
are performed to achieve very satisfactory results for multi-objective optimization [109].
Deb et al. [78] proposed the NSGA-II, which mainly introduces an elitist strategy on the
basis of the original NSGA algorithm and uses the concept of a crowding degree to sort
individuals at the same level into nondominated levels, improving the algorithm speed.
The NSGA-II algorithm is mainly used to solve unconstrained multi-objective optimization
problems, while most historical optimization models were multi-objective optimization
models with multiple constraints [107]. Currently, the improved NSGA-II algorithm is
mostly used, which introduces the Deb constraint criterion into the NSGA-II algorithm [110].
A flow chart of the improved NSGA-II approach is shown in Figure 3. Due to the poor
computational performance of the NSGA-II algorithm in a high-dimensional target space,
the NSGA-III algorithm, with predefined multiple reference points to maintain population
diversity, has also been introduced [104].

Table 2. Main methods for solving simulation–optimization models for irrigation schedules.

Optimization Method Classification Features

Traditional mathematical
programming

Linear programming [90], nonlinear
programming [91], and dynamic programming [111]

Simple calculation but has limitations
when dealing with complex problems

Artificial intelligence search
Genetic algorithms [112], simulated annealing [113],
particle swarm optimization [114], free search
algorithm [115], and neural network [116]

Fast computing speed, strong stability,
adaptability, and robustness

The optimization method, such as the NSGA-II, cannot provide the optimal solution
to the optimization problem and can only provide several sets of Pareto solutions with
good results (i.e., several irrigation schedules) [1]. Therefore, decision-making methods
are necessary to further determine the optimal irrigation schedules. The decision-making
methods used for optimizing irrigation schedules mainly include the analytic hierarchy
process (AHP), entropy weight (EW), principal component analysis (PCA), grey relational
analysis (GRA), and the technique for order preference by similarity to an ideal solution
(TOPSIS) [117]. The AHP, EW, and PCA belong to a single evaluation method [117],
which only evaluates a single indicator, such as evaluating the influencing factors in
irrigation water efficiency or irrigation water productivity [118,119]. These methods usually
cannot determine the optimal treatment and have certain limitations [120]. To address



Water 2024, 16, 2545 10 of 17

these limitations, comprehensive evaluation methods such as the GRA and TOPSIS were
proposed, which greatly improved the robustness and universality of the results [121]. The
TOPSIS method ranks each candidate solution by calculating the distance between the
evaluation object (a solution), the ideal solution (the best value in the scheme), and the
negative ideal solution (the worst value in the scheme), so as to determine the solution
that is closer to the ideal solution and farther away from the negative ideal solution [122].
In the TOPSIS method, the weights of several objectives are determined, where the larger
the fluctuation of the objectives, the smaller the entropy weight, and therefore the greater
the weight of the objectives [122]. These comprehensive evaluation models were used for
quantifying the fruit–quality index [121], developing optimal irrigation and fertilization
strategies [123], as well as balancing yield, fruit quality, crop water productivity, and
environmental benefits [124].
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4.2. Spatiotemporal Scale of Irrigation Schedule Optimization

The optimization problem of irrigation schedules based on crop models initially
focused on a field scale, while in recent years, it has been developed to solve irrigation
water allocation problems on a regional scale. For example, Li et al. [1,125] considered the
distribution of soil types and irrigation areas in their study area and solved the optimal
irrigation plan for the typical irrigation areas in the middle reaches of the Heihe River in
the arid region of Northwest China under the current situation and in typical climate years.
Wang et al. [126] considered the spatial heterogeneity of the soil types, crop types, and
weather types in the Yingke irrigation area in the middle reaches of the Heihe River and
proposed an irrigation plan based on the maximum field water-use efficiency or the net
economic benefits of using an irrigation schedule optimization model.

The traditional optimization methods were based on the time scales of the growth
stage, in one month or ten days, to solve the problem of water allocation between the
different stages, in order to achieve the maximum yield or benefit [90,91]. In the opti-
mization of irrigation schedules based on the water-production function, the sensitivity
index of the Jensen function is reduced to a daily scale to solve for the optimal irrigation
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schedule on a daily scale [90,91]. At present, irrigation schedule optimization based on
crop model-optimization algorithms is usually on a daily scale. However, crop models
can usually simulate smaller scales (such as an hourly scale) of crop growth and soil water,
heat, and nitrogen environments [4]. Optimization research on an hourly scale irrigation
schedule has been attempted, such as regulating the optimal timing of the day, duration,
and pressure head threshold for irrigation based on the Hydrus-1D model [127].

5. Conclusions and Future Perspectives

This study integrated previous research and summarized how to optimize irrigation
schedules based on both crop models and simulation–optimization models. It elaborated
on the important links involved in the optimization process from the aspects of irrigation
schedule scenarios, optimization objectives, crop model selections, optimization algorithms,
and decision-making techniques. It was concluded that the method of optimizing irrigation
schedules based on crop models was more mechanistic in describing the physical processes
of crop growth. However, this method can only answer the “ what if” question and may
not necessarily find the optimal solution. The method of optimizing irrigation schedules
based on simulation–optimization models coupled with optimization algorithms could
find the global optimal solution.

The problems and future prospects in the optimization of irrigation schedules based
on simulation–optimization models are summarized in Table 3 and as follows:

Table 3. Problems and future prospects in optimization of irrigation schedules based on simulation–
optimization models.

Research Objects Problems Future Prospects

Simulation–optimization
models

(1) Only the AquaCrop model is
widely used.

Other mechanism crop models should be
combined with optimization algorithms.

(2) The AquaCrop model has limitations,
such as the relatively simple
transport processes of soil water, salt,
and nitrogen, and ignores the
influence of soil heat.

(3) Only focusing on the
one-dimensional (1D) water
movement process in the soil profile.

The promotion of drip irrigation technology
underneath film has demonstrated the
importance of quantifying the 2D/3D water
movement process.

Optimization of
irrigation schedules

(1) The uncertainty of model parameters
affects the accuracy of
optimization results.

Based on intelligent optimization algorithms to
calibrate model parameters, explore highly
applicable calibration tools for intelligent
optimization algorithm to improve
model efficiency.

(2) The uncertainty of the division of
typical hydrological years and model
upscaling simulation.

Seeking ways to reduce uncertainty
in optimization.

(1) Further Development of Crop Models.

The widely used AquaCrop model is relatively simple to apply, and several new ver-
sions have been developed in recent years, using R [128], MATLAB [129], and Python [130]
languages, as the transport processes of soil water, salt, and nitrogen are relatively sim-
ple and the influence of soil heat can be ignored. This model can simulate scenarios of
different irrigation methods, such as surface irrigation and drip irrigation, though it is a
one-dimensional model that cannot accurately describe the two-dimensional distribution
of soil water, heat, salt, and nitrogen under drip irrigation conditions. The accuracy of the
optimization results for irrigation schedules based on the AquaCrop model is insufficient.
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Although other crop models are more comprehensive and detailed in reflecting soil
water, heat, nitrogen, salt dynamics, and crop growth, they are rarely combined with
optimization algorithms for irrigation schedule optimization. They can only be used to
answer the “what if?” question, that is, the optimization plan for irrigation schedules
is only the optimal result in the scenario given by the user and is not necessarily the
global optimum.

The HYDRUS-2D/3D model is a universal 2D/3D model, but it is currently rarely
combined with optimization algorithms for irrigation schedule optimization. The model
also lacks a crop growth module, which limits its development.

In summary, further development of two-dimensional or three-dimensional soil water,
heat, nitrogen, and salt-coupled models with crop growth, and the exploration and resolu-
tion of the problems encountered in their coupling with the optimization algorithms are
necessary. This will contribute to the precise regulation of future irrigation schedules.

(2) Uncertain Analysis in Irrigation Schedule Optimization.

Agro-hydrological models can simulate the complex physical growth processes of
crops, which involve many model parameters. These model parameters have uncertainty,
which can affect the accuracy of the simulation results and ultimately affect the accuracy
of the optimization results. Therefore, it is necessary to calibrate the model parameters
based on intelligent optimization algorithms and explore intelligent optimization algorithm
calibration tools with a strong applicability to improve model efficiency when conducting
research on irrigation schedule optimization based on crop models.

In addition, there is uncertainty in the division of the typical hydrological year and in
the simulation of model upscaling for irrigation schedule optimization, and this uncertainty
can significantly affect the actual optimization effect. Therefore, how to further reduce this
uncertainty in optimization is a key issue for future research.
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