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A B S T R A C T   

The spatially distributed AquaCrop-multiobjective robust possibilistic programming (distributed AquaCrop- 
MORPP) model that considers spatially-distributed land, soil and management features has been proposed for 
irrigation scheduling optimization under uncertain conditions. Compared with traditional simulation- 
optimization models, it improved the robustness of decision making by optimizing irrigation amounts and 
dates considering physical crop growth process and the spatial heterogeneity of soil, crop and irrigation. 
Additionally, it enhanced the AquaCrop-optimization model by handling uncertainties presented as fuzzy and 
stochastic variables. Moreover, it enhanced the applicability of multi-objective programming (MOP) by 
balancing contradictory relationships between the objectives of the net economic benefit and field water use 
efficiency, which were simulated and calculated by the spatially-distributed AquaCrop model. Fifty groups of 
optimal Pareto solutions were obtained by solving the spatially-distributed AquaCrop-MORPP model using a fast 
and elitist multi-objective genetic algorithm (NSGA-II) method. Subjective decision-making methods (e.g., 
Technique for order preference by similarity to an ideal solution (TOPSIS) and prospect theory) were used to 
select specific alternatives from the Pareto solutions to provide recommendations for managers from different 
viewpoints. The alternatives that maximized field water use efficiency or net economic benefit separately were 
selected to cope with emergencies. To obtain optimal irrigation scheduling under future climate change, the 
RCP4.5 future climate scenario was integrated with the spatially-distributed AquaCrop-MORPP model. The 
model was verified by applying it to the Yingke Irrigation District (YID), Heihe River Basin (HRB), China. The 
results showed that the maximum field water use efficiency and net economic benefit in 2021 improved by 24% 
and 1.3% than those in 2012 for the alternative selected by TOPSIS method. The irrigation scheduling with 
varied irrigation dates improved by 3.7% and 5% than the irrigation scheduling with fixed irrigation dates for 
field water use efficiency and net economic benefit, separately. The study provides a framework about how to 
build spatially-distributed crop simulation-optimization model with consideration of tradeoffs amid multiple 
objectives to optimize irrigation schedules, and how to select alternatives based on managers’ risk attitudes, and 
offer a series of Pareto solutions for managers.   

1. Introduction 

Water contradictions between increasing water demands and limited 
supplies of water are increasingly serious issues, particularly in arid and 
semiarid regions (Zhang et al., 2018). Agricultural water contradictions 
are highly affected by climate change, which impacts weather condi-
tions (e.g., rainfall, evapotranspiration and runoff), and farmland mi-
croclimates (Li et al., 2020; Wang et al., 2019). Thus, it is essential to 
explore optimal water allocation schemes under climate change 

scenarios to cope with emergencies. Precise irrigation is an effective tool 
to alleviate water contradictions because it can allocate water resources 
based on actual weather, soil and crop conditions, efficiently improving 
water use efficiency. Therefore, it is critical to optimize irrigation 
scheduling based on precise irrigation with consideration of future 
climate change scenarios to alleviate water contradictions and achieve 
sustainable agricultural development. 

Simulation models are helpful tools for depicting irrigation water 
consumption and crop growth. They can compare the results by 
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changing irrigation water inputs and obtain relatively good water allo-
cation schemes while considering the actual agro-hydrological charac-
teristics and spatial heterogeneities of soil types, weather conditions and 
crop types. Comparisons among different irrigation schemes cannot help 
managers find global optimal results. Spatially-distributed simulation- 
optimization models have been proposed to improve this problem 
(Schoups et al., 2006; Chen et al., 2016; Wang et al., 2020). The usually 
adopted models include the spatially-distributed AquaCrop-optimiza-
tion model and spatially-distributed SWAP-optimization model. 
Compared with the spatially-distributed SWAP-optimization model, the 
spatially-distributed AquaCrop-optimization model needs less input 
data and is easily operated, which makes it widely used in irrigation 
water resource management (Han et al., 2019, 2020; Li et al., 2020). 
Although some studies have adopted spatially-distributed Aqua-
Crop-optimization models to optimize irrigation amount, these studies 
neglected the effects of irrigation dates on water use efficiency and 
yields. Therefore, in this paper, the irrigation amounts and dates are 
optimized simultaneously by using the spatially distributed 
AquaCrop-optimization model at a regional scale. 

Another common disadvantage of the optimization models in the 
spatially-distributed AquaCrop-optimization models is that they usually 
adopt the yield as the only objective but do not consider the field water 
use efficiency. Field water use efficiency matters for both regional 
managers and local farmers because water use will influence the cost of 
crop production and is an important indicator of sustainable develop-
ment. Meanwhile, yield and field water use efficiency are contradictory, 
which means that emphasizing one objective will weaken the other 
(Mosleh et al., 2017; Li et al., 2018). Many published optimization 
model studies have considered field water use efficiency (Wang et al., 
2019; Yue et al., 2020). However, they often used coefficients to 
calculate water seepage in the field and ignored the influences of the 
spatial variability of soil, weather conditions and irrigation. Thus, the 
introduction of a distributed simulation model is a good way to improve 
the performance of multi-objective optimization models and balance the 
relationship between the yield and field water use efficiency. Precipi-
tation also affects the water use efficiency. The concept of blue and 
green water would help to separate and quantify the influence of irri-
gation water and precipitation (Cao et al., 2014). Therefore, the field 
water use efficiency calculated by efficient blue and green water should 
be integrated into the AquaCrop simulation and multi-objective opti-
mization model. 

The irrigation water resource system is full of uncertainties because 
of the complex hydro-meteorological conditions and supply-demand 
environments of water resources. The uncertainties expressed as fuzzy 
numbers could be handled by fuzzy mathematical programming (FMP) 
methods. For dealing with fuzzy numbers in the constraints, the usually 
adopted FMP approaches mainly include possibility-constrained pro-
gramming (PCP), credibility-constrained programming (CCP), and 
robust possibility programming (RPP) (Li et al., 2013; Lu et al., 2016; 
Inuiguchi and Ramik., 2000). The above three methods can improve the 
robustness of decisions by considering the various risk attitudes of 
managers on stochastic events, which are risk appetite, risk neural and 
risk aversion (Zhang et al., 2016; Pishvaee et al., 2012). Compared with 
the PCP and CCP methods, the RPP model can not only quantify risk 
attitudes but also avoid unacceptable risks in economic losses (Peykani 
et al., 2018). Therefore, the RPP model needs to be incorporated with 
the spatially-distributed AquaCrop model and multiobjective optimiza-
tion model for irrigation scheduling optimization under uncertainties. 

There are many methods available for the spatially-distributed 
simulation-optimization modelling, such as the NSGA-II method and 
the parallel genetic algorithm (PGA). Compared with the PGA method, 
the NSGA-II method is highly efficient for addressing the MOP problem 
because it can obtain the Pareto frontier composed of multiple groups of 
optimal water allocation schemes (Hojjati et al., 2018; Tabari and Sol-
tani, 2013). Nevertheless, too many schemes could be confusing for 
managers, and thus, multiple-criteria decision-making methods 

(MCDMs) could be used to help select at least one water allocation 
scheme according to the preferences of decision makers. The subjective 
multiple criteria decision-making method (SMCDM) is extensively 
applied to decision making because it can expose the subjectivities and 
preferences of managers and is closer to actual applications (Wang et al., 
2020). The SMCDM is categorized into deterministic (DSMCDM) and 
uncertain (USMCDM) decision methods, and TOPSIS and prospect the-
ory are typical representations of the above two methods (Li et al., 2019; 
Grishina et al., 2017; He et al., 2019). As implied, the DSMDCM method 
deals with the events that happen determinedly, while the USMCDM 
handles the events that occur randomly. The above two methods can 
offer managers various perspectives. Excluding the abovementioned two 
alternatives, extreme alternatives that tend to one objective excessively 
and alternatives under future climate-change scenarios can help man-
agers deal with emergencies (Shahvari et al., 2019; Xu et al., 2020). 

The objective of this study is to develop a framework for managing 
irrigation scheduling under uncertainties. The framework includes a 
spatially-distributed AquaCrop model, multiobjective programming 
(MOP), robust possibility programming (RPP), NSGA-II, TOPSIS and 
prospect theory methods. First, spatially-distributed AquaCrop multi-
objective programming (distributed AquaCrop-MOP) is established by 
coupling the spatially-distributed AquaCrop model with the MOP model. 
It could optimize irrigation amounts and irrigation dates simultaneously 
and balance the relationship between the yield and field water use ef-
ficiency, which were measured by the spatially-distributed AquaCrop 
model. Second, the spatially-distributed AquaCrop-MORRP model is 
developed by integrating RPP into the spatially-distributed AquaCrop- 
MOP model, which can handle uncertainties expressed as fuzzy 
numbers, and stochastic variables. Third, the NSGA-II method is applied 
to solve the spatially-distributed AquaCrop-MORRP model to obtain 
optimal Pareto solutions. Finally, the TOPSIS and prospect theory 
methods are used to select alternatives from Pareto solutions to provide 
more alternatives for managers from different views. The proposed 
model is employed in a study area of Yingke District (YID), Heihe River 
Basin (HRB), China, to verify its application. 

2. Methodology 

2.1. The spatially-distributed AquaCrop model 

The AquaCrop model can reflect the responses of yield to irrigation 
scheduling under deficient irrigation (Zhang et al., 2013). The irrigation 
dates and irrigation amounts are optimized simultaneously because they 
both affect the crop yield. Because irrigation scheduling is different for 
crops with various soil types and weather conditions, the 
spatially-distributed AquaCrop model is developed by dividing the study 
area into several homogeneous decision-making units. The formulation 
of the spatially-distributed AquaCrop model can be found in Wang et al. 
(2021). 

2.2. Optimization model under uncertainties  

(1) Water footprint based on the spatially-distributed AquaCrop 
model 

The water footprint of crop yield production at the irrigation district 
scale is described as follows: 

GPWF =BWF + GWF = 10 × (IR+ER)/Y (1)  

where GPWF is the yield production water footprint (m3/kg); BWF and 
GWF are the blue water footprint and green water footprint (m3/kg), 
respectively; IR and ER are the irrigation amount and rainfall (mm), 
respectively; and Y is the yield (kg/ha). 

The effective water footprint rate for yield is introduced in this paper 
because not all irrigation amounts are used for evapotranspiration 
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caused by soil water exchanges, and the expression is shown as follows. 

RET =(BWFET +GWF)/GPWF = ET/(IR+ER) (2)  

where RET is effective water footprint rate. BWFET is the effective blue 
water footprint (m3/kg). ET is the actual evapotranspiration over the 
whole growth period (mm), affected by soil water stress and the crop 
coefficient, and simulated by the spatially-distributed AquaCrop model. 

ETday =Eday + Trday = Kr × Ke × ET0,day + KS × KCT r, × ET0,day (3)  

where Eday and Trday represent daily soil evaporation and crop transpi-
ration (mm/day), respectively, and Kr, Ke, Ks and KcTr denote the 
evaporation reduction coefficient, the evaporation coefficient, the soil 
water stress coefficient, and the crop transpiration coefficient, respec-
tively. These four parameters all change from zero to one, and a higher 
value corresponds to a smaller water stress. ET0,day signifies the daily 
crop potential evapotranspiration (mm/day). 

ET =
∑T

t=1
ETday,t (4)  

where ET day,t implies the actual daily crop evapotranspiration (mm/ 
day). T indicates the length of the growth period and is 110 days, 155 
days and 155 days for wheat, seed corn and field corn, respectively.  

(2) Multiple-objective robust possibilistic programming (MORPP) 

The MORPP model is used to trade off the objectives of net economic 
benefit and field water use efficiency and deals with the uncertainties 
presented as fuzzy numbers and stochastic variables, shown as follows:  

Objective 1 - maximizing the field water use efficiency 

maxf1 =
∑I

i=1
(BWFET,i +GWFi)

/
GPWFi (6)  

where f1 is the field water use efficiency defined as the sum of effective 
blue water and green water divided by the sum of blue water and green 
water. i is the subscript of decision-making units (DMUs), derived from 
overlying the soil layer and crop layer based on the GIS platform, and the 
division results are shown in Table 1. I is the numbers of DMUs. BWFET,i 

is the effective blue water footprint of the ith DMU (m3/kg), GWFi is the 
green water footprint of the ith DMU (m3/kg), and GPWFi is the sum of 
the blue water footprint and green water footprint of the ith DMU (m3/ 
kg).  

Objective 2 -maximizing the net economic benefit 

Maxf2 =
∑I

i=1
(Pc,i(ω)Yi(WAit, IDit)Ai − Bi

∼WAiAi) (7)  

where f2 denotes the net economic benefit defined as the gross economic 
benefit from the yield minus the water cost (104 Yuan). Yi(WAit, IDit)

implies the yield per area (kg/ha), expressed as a function of irrigation 
amount (WAit) and irrigation date (IDit), obtained from running the 
spatially-distributed AquaCrop model under known WAit and IDit. WAit 

and IDit represent irrigation amounts (mm) and irrigation dates (day) of 
DMUs during growth period t and are the decision variables of the 
optimization model. Pc,i(w) and Bi

∼ signify crop prices expressed as 
stochastic variables and water costs characterized by fuzzy numbers 
(Yuan/m3), respectively. w indicates the probability of the distribution 
function of crop price. Ai is the planting area of the crop at the ith DMU 
(ha). 

2.2.1. Constraints  

(1) Water availability constraints 

Nec(
∑I

i=1
(
∑T

t=1
WAi,t)Ai / 1000≤ ηQ∼)≥ δs (8)  

where η is the canal water-use coefficient, Q∼ denotes available water 
resources (fuzzy numbers, 104 m3), and δs indicates the necessary level 
(with a higher value indicating a larger confidence level).  

(2) Irrigation amount constraints 

WAit,min ≤WAit ≤ WAit,max ∀i, t (9)  

where WAit,min and WAit,max represent the minimum and maximum water 
allocation at growth period t for the crop at ith DMU (mm), respectively.  

(3) Irrigation date constraints 

IDit,min ≤ IDit ≤ IDit,max ∀i, t (10)  

where IDit,min and IDit,max signify the initial and final irrigation dates of 
growth period t for the crop at the ith DMU (day), respectively.  

(4) Crop evapotranspiration constraints 

ETai ≤ ETmi ∀i (11)  

where ETai and ETmi denote the actual crop evapotranspiration and 
maximum crop evapotranspiration (mm) of the ith DMU, respectively. 
ETai is simulated by the spatially-distributed AquaCrop model.  

(5) Nonnegative constraints 

WAit ≥ 0 Tit ≥ 0  ∀i, t (12)   

(6) The mapping relationship between the number of decision vari-
ables and the number of DMUs 

NDMUi =
∑T

t=1
2NWAit ∀i (13)  

where NDMU and NWA mean the numbers of decision variables and 
numbers of DMUs, respectively. There are ten DMUs and seventy-four 
decision variables. 

Table 1 
Initial and final irrigation dates (Tmin and Tmax) and minimum and maximum water allocations (WAmin and WAmax) of seed corn, field corn and wheat at various growth 
periods.  

Growth period Jointing stage Heading stage Grouting stage Mature stage Jointing stage Heading stage Grouting stage 

Crops Seed corn/field corn wheat 
Tmin (day) 27 58 83 110 22 49 79 
Tmax (day) 57 82 109 142 48 78 97 
WAmin (mm) 83 83 75 75 83 83 75 
WAmax (mm) 165 165 150 150 165 165 150  
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2.3. The spatially-distributed AquaCrop-MORPP model and solving 
methods 

The framework of the spatially-distributed AquaCrop-MORPP model 
is shown in Fig. 1. The initial individuals composed of decision variables 
generated randomly based on the NSGA-II method are input into the 
coupled spatially-distributed AquaCrop-MORPP model. In the coupled 
model, the operations are as follows: the spatially-distributed AquaCrop 
model is called to simulate the yields and ETA under given individuals, 
which are inputted into the MORRP model to calculate the objective 
values of each individual. After the above process, the calculated ob-
jectives of all individuals are sent back to the NSGA-II platform to 
conduct evolutions of individuals where individuals with higher ranks 
will have higher probabilities of evolving to the next generation. The 
new individuals are input into the spatially-distributed AquaCrop- 
MORPP model to repeat the above processes until the Pareto frontier is 
attained. The steps of formulating the framework of the spatially- 
distributed AquaCrop-MORPP model are shown as follows:  

(1) Build the spatially-distributed AquaCrop model based on section 
2.1.  

(2) Develop the multiple-objective robust possiblistic (MORPP) 
model according to section 2.2.  

(3) Establish the spatially-distributed AquaCrop-MORPP model on 
the basis of section 2.3.  

(4) Solve the spatially-distributed AquaCrop-MORPP model and 
obtain the Pareto frontier by adopting the NSGA-II method, as 
shown in section 2.3.  

(5) Obtain alternatives by using the TOPSIS and prospect theory 
methods from the Pareto frontier, displayed in section 2.4. 

The NSGA-II is used to solve the spatially-distributed AquaCrop- 
MORPP model, which can obtain multiple groups of Pareto solutions, 
and the detailed process is as follows:  

(1) Determine decision variables (74 decision variables (irrigation 
amounts and irrigation dates) for 10 DMUs). 

(2) Randomly generate the parent population according to the de-
cision variables, change interval and number of selected 
chromosomes.  

(3) Calculate the objective values of chromosomes with the help of 
the spatially-distributed AquaCrop-MORPP model. 

Fig. 1. Framework of the spatially-distributed AquaCrop-MORPP model.  
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(4) Assign the rank (level) of the first parent population on the basis 
of the nondominant solution.  

(5) Generate child population with applied selection, crossover and 
the mutation operator.  

(6) Combine parent chromosomes and child chromosomes to form a 
new population and sort the new population by the fast 
nondominant solution.  

(7) Create the parent population for the next iteration based on the 
selected chromosome and fast nondominant solution.  

(8) Judge that is the convergence criterion satisfied. If yes, optimal 
irrigation amounts, irrigation dates, and objective functions are 
attained; if not, turn to step (5).  

(9) End. 

2.4. Multicriterion decision-making methods (DCDM) 

The TOPSIS and prospect theory methods are applied to select al-
ternatives from multiple groups of optimal Pareto solutions from 
different views of decision making.  

(1) TOPSIS method 

The alternative with the smallest relative distance value will be 
selected in the TOPSIS method, and the detailed steps are shown as 
follows:  

Step 1 : operate normalization vectors 

fij =
fij − min(fij)

max(fij) − min(fij)
(14)    

Step 2 : get the normalized decision matrix 

R=(rij)m×n = (fijWj)m×n (15)  

where i and j represent the subscripts of alternatives and objectives, 
respectively. m and n are the numbers of alternatives and objectives, 
respectively. fij means the normalized value of the jth objective of the ith 
alternative. Wj is the weight of the jth objective, which is determined by 
the analytic hierarchy process (AHP) method (Zhang et al., 2018). The 
weights of the field water use efficiency and net economic benefit are 0.4 
and 0.6, respectively. r is the weighted normalized value of the jth 
objective of the ith alternative. R is the normalized decision matrix.  

Step3 : determine ideal points 

The ideal points include the positive and negative ideal points (s+j 
ands−j ), where the positive ideal points denote the best values of multiple 
objectives, and the negative ideal points represent the worst values of 
multiple objectives. The principles of determining ideal points are 
shown as follows: 

s+j = max
1≤i≤m

{rij}(j= 1, ...n)

s−j = min
1≤i≤m

{rij}(j= 1, ...n) (16)    

Step 4 : Calculate the distances (EDi+(i− )) of the ith alternative to the 
ideal points based on the two-dimensional Euclidean distance. 

EDi+(i− ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1
(rij − s+(− )

j )
2

√
√
√
√ i = 1, ...m (17)    

Step 5 : Calculate the relative distance (Ci) of the ith alternative 

Ci =
EDi+

EDi− + EDi+
i = 1, 2, ...m (18)    

Step 6 : Rank the alternatives and choose the alternative with the 
smallest C value.  

(2) Prospect theory method 

The prospect value is composed of a positive prospect value of gains 
and a negative prospect value of losses. The prospect value is calculated 
by multiplying the prospect utility value by the decision weight. The 
prospect utility values of gains and losses are transformed from gains 
and losses based on the utility functions. The utility functions measure 
the degrees to which gains or losses satisfy ideal expected values. The 
decision weights are converted from occurrence probabilities of alter-
natives according to the weight functions of gains and losses, which can 
quantify the risk attitudes of managers on risk events. The utility func-
tions and weight functions of gains and losses are shown in Fig. 2.  

Step 1–2 : normalize vectors and select ideal points 

These two steps are the same as step 1 and step 3 in the TOPSIS 
method.  

Step 3 : compute the prospect utility value 

Δfij ={
d(fij, f0) fij ≥ f0
− d(fij, f0), fij < f0  

v(fij)
+(− )

= {
Δf α

ij Δfij ≥ 0

− θ(− Δfij)
β
,  Δfij ≤ 0

(19)  

where f0 implies the ideal points, including the positive and negative 
ideal points, respectively, and fij donates the jth objective value of the ith 
alternative. d(fij, f0) represents the absolute distance between the jth 
objective of the ith alternative and ideal point, while Δfij is the relative 
distance. If Δfij is larger than zero, it indicates gains; otherwise, it in-
dicates losses. v(fij)+(− ) signifies the negative and positive prospect 
utility values of the jth objective of the ith alternative, transformed from 
gains and losses based on Eq. (19). α (β) expresses the relationship be-
tween gains (losses) and corresponding prospect utility values, α, β < 1 
represents the decreasing sensitivity degree, θ is the curve abruptness, 
and θ > 1 indicates loss aversion.  

Step 4 : calculate prospect values of alternatives 

Vi =
∑n

j=1
Π+(pj)v(fij)

+
+
∑n

j=1
Π− (pj)v(fij)

−

Π− (+)(pj)=
pγ(ε)

1 − p)(1 − p)(1 − p)γ(ε)
)

1/γ(ε) (20)  

where pj represents the occurrence probability of the jth objective of the 
ith alternative, Π− (pj) and Π+(pj) denote the decision weights of the jth 
objective for losses and gains, respectively, and γ and ε describe the 
relationship between occurrence probability and decision weight from 
perspectives of losses and gains, respectively.  

Step 5 : reckon weight and rank the alternatives 

Because the probabilities of alternatives are unknown, they are 
optimized together to obtain the united probabilities, and the processes 
are shown as follows:   
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s.t. 
∑n

j=1
pj = 1, pj ≥ 0 (21) 

The optimal p* = (p*
1, p*

2, ..., p*
n) can be obtained by solving the above 

model, which is transformed into corresponding decision weights. The 
optimal prospect values of alternatives are as follows: 

Vi =
∑n

j=1
Π+(p*

j )v(Δfij)
+
+
∑n

j=1
Π− (p*

j )v(Δfij)
− (22)  

where V represents the prospect value of all alternatives and Vi denotes 
the prospect value of the ith alternative. 

3. Case study 

3.1. Study area 

The Yingke Irrigation District (YID) is located in the middle oasis of 
the Heihe River Basin (HRB) and the main food production base of 
China, as shown in Fig. 3. The crops are mainly wheat, seed corn, and 
field corn. The reference evapotranspiration (ET0) is approximately 
1200 mm, while the precipitation is approximately 125 mm, which 
belongs to semiarid and arid districts (Zhang et al., 2018). Crop pro-
duction is mainly derived from irrigation because natural rainfall cannot 
satisfy the water demands of crops. The irrigation resources are 
composed of surface water from the HRB and groundwater as supple-
mentary water resources. There were four soil types in the study areas, 
and the compositions of the soil types are shown in Table 2. 

Fig. 2. a and b are the utility functions and weight functions of gains and losses. 
Notes: p is the occurrence probability of events, w- is the decision weight of losses, and w+ is the decision weight of gains, transformed from p based on the weight 
function. Π(p) is the decision weight. 

Fig. 3. The geographical location of the study area.  

maxV =(V1(a1),V2(a2), ....Vm(am))=
∑m

i=1

∑n

j=1
Π+(pj)v(Δfij)

+
+

∑m

i=1

∑n

j=1
Π− (pj)v(Δfij)

−
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3.2. Problem statement 

Previous studies used distributed AquaCrop-optimization models to 
optimize irrigation amounts, but the influences of irrigation dates on the 
yield were neglected, and irrigation amounts and irrigation dates were 
unable to be optimized simultaneously. Except for the above problem, a 
contradictory relationship between the field water use efficiency and 
economic benefit was not considered, where emphasizing one may 
result in another being unacceptable. Furthermore, the ignorance of 
spatial variability is not in accordance with actual conditions because 
the changes in soil types, weather types and crop types will influence the 
water demand, field water use efficiency and crop yield. Therefore, it is 
essential to optimize irrigation amounts and irrigation dates concur-
rently, as well as trade off contradictory relationships between field 
water use efficiency and economic benefit with consideration of spatial 
heterogeneities of soils, weather, and crops. Agricultural water contra-
dictions alter with climate change, and the corresponding optimal irri-
gation scheduling will be different under various climate change 
scenarios; thus, it is necessary to optimize irrigation scheduling under 
climate change in the future to cope with emergencies. 

3.3. Data collection 

The water price and available water resources are both expressed as 
fuzzy numbers that are composed of the minimum possible, possible and 
maximum possible values, which are determined by the respective 
minimum, mean and maximum values of the historical water price and 
historical water resource supply. The fuzzy numbers of water prices and 
available water resources are expressed as [0.30, 0.32, 0.34] Yuan/m3 

and [1.07, 1.09, 1.11] × 108 m3, respectively. The initial and final dates 
at each growth period are set based on the irrigation periods gained from 
the Annual Report of Water Conservancy (2012). The crop price is 
characterized by a stochastic normal distribution, which is fitted on the 
basis of daily crop-price time series from January 01, 2017 to May 03, 
2020 acquired from the website (https://cif.mofcom.gov.cn/cif/html/ 
dataCenter/). The average crop prices of wheat, field corn and seed 
corn are 2.43, 1.82 and 2.50, respectively. The standard deviations of 
crop prices are 0.04, 0.03 and 0.03 independently. The hydrometeoro-
logical data in 2021 under the RCP4.5 scenario from Wang et al. (2019) 
are input data of the spatially-distributed AquaCrop-MORPP model to 
optimize optimal irrigation scheduling for the future year. The land-use 

type in 2021 is assumed to be the same as that in 2012. The initial and 
final irrigation dates at different growth periods of three crops, four soil 
types and ten decision-making units are shown in Tables 1–3. 

4. Results analysis 

This subsection is composed of an analysis of the optimal irrigation 
scheduling, the spatial distributions of field water use efficiency and net 
economic benefit, and optimal Pareto solutions in 2012 and 2021. 

4.1. Optimal irrigation scheduling  

(a) Pareto frontier and evaluation results 

Fig. 4 shows the Pareto frontier composed of 50 groups of non-
dominated solutions (optimal Pareto solutions) as well as the positive 
and negative ideal points. The positive ideal point is the point with both 
maximum field water use efficiency and net economic benefit. The 
negative ideal point is the point with both minimum field water use 
efficiency and net economic benefit. Fig. 4 shows that the field water use 
efficiency contradicts the net economic benefit. The reason would be the 
different influences of increasing water allocation on water use effi-
ciency and net economic benefit. More water allocation will increase 
actual crop evapotranspiration (ETA) and generate higher yields and 
further larger net economic benefits under deficient irrigation. Howev-
er, not all irrigation amount is used for ETA. Excessive irrigation will 
lead to water losses, such as deep infiltration. Under this circumstance, 
the incremental ETA is smaller than the increase degree of water allo-
cation, resulting in field water use efficiency decreasing with water 
allocation. The 31st and 33rd alternatives are selected as extreme al-
ternatives with the maximum net economic benefit and maximum field 
water use efficiency, respectively. All the optimal alternatives are 
screened by TOPSIS and the prospect theory method, and the relatively 
optimum alternatives are chosen based on the evaluated indicator 
values. 

Fig. 5 shows the indicator values of 50 groups of alternatives based 
on TOPSIS and the prospect theory method. The 4th and 43rd 

Table 2 
Classifications and compositions of four types of soils at different soil depths of the YID (type 1, type 2, type 3 and type 4 are denoted as T1, T2, T3, and T4, 
respectively).  

Types 0–80 cm (%) 80–140 cm (%) 

Clay Silt Sand classification Clay Silt Sand classification 

T1 15.22 ± 2 55 ± 1 29.78 ± 1 Silt loam 17.17 ± 3 53.56 ± 3 29.27 ± 3 Silt loam 
T2 11.99 ± 3 51.52 ± 2 36.49 ± 3 Silt loam 6.57 ± 1 32.67 ± 3 60.76 ± 3 Sandy loam 
T3 14.33 ± 3 54.31 ± 1 31.37 ± 2 Silt loam 16.66 ± 2 44.41 ± 2 38.93 ± 2 loam 
T4 14.43 ± 2 43.46 ± 3 42.11 ± 2 loam 16.09 ± 3 43.51 ± 3 40.40 ± 3 loam  

Table 3 
Ten divided decision-making units (DMUS) of the YID by overlying soil types and 
crop types.  

Decision-making units (DMU) Soil types Crop types Weather condition 

DMU1 T1 Field corn Zhangye station 
DMU2 T3 Field corn Zhangye station 
DMU3 T4 Field corn Zhangye station 
DMU4 T1 Seed corn Zhangye station 
DMU5 T2 Seed corn Zhangye station 
DMU6 T3 Seed corn Zhangye station 
DMU7 T4 Seed corn Zhangye station 
DMU8 T1 Wheat Zhangye station 
DMU9 T3 Wheat Zhangye station 
DMU10 T4 Wheat Zhangye station  

Fig. 4. Pareto frontier composed of 50 groups of nondominated solutions 
(optimal Pareto solutions), positive and negative ideal points. 
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alternatives in 2012 have the largest indicator values according to 
TOPSIS and the prospect theory method, respectively, and are selected 
as the optimum schemes of the two methods.  

(b) Optimal irrigation scheduling of interest points 

Fig. 6 (a) and (b) show the optimal irrigation schedules of the 4th, 
43rd, 31st, and 33rd alternatives. Fig. 6 (a) shows that the irrigation 
amounts of most DMUs under the 31st alternative are higher than those 
under the other three alternatives. The reason is that the net economic 
benefit is positively correlated with water allocation under deficient 
irrigation. The irrigation amount at most DMUs under the 33rd alter-
native is lower than the DMUs under the other three alternatives. This is 
because the field water use efficiency presents a negative relationship 
with water allocation. Water allocations of the 4th and 43rd alternatives 
are between 33rd alternative and 31st alternative, indicating that these 
two alternatives can obtain compromised optimal irrigation scheduling. 

Fig. 6 (a) reveals that the water allocation of crops on the first irri-
gation date is lower than that on other irrigation dates, while the water 
allocation at other irrigation periods is the same, which is caused by 
different water demands at various growth periods. Meanwhile, one 
crop with different soil types has various water allocation, which shows 
the influence of soil characteristics on water allocation patterns. Thus, it 
is necessary to integrate spatial variability into the optimization 
modeling of irrigation scheduling. Under the same irrigation scheduling, 
crops under T2 obtained the largest yields, followed by those under T3, 
T4, and T1. The reason is that soil type 2 has the least difference between 
the wilting point and the field capacity and then has the smallest water 
stress. With regard to water allocation patterns, seed corn with T4 under 
the 4th and 43rd alternatives was taken as an example. The total water 
allocation was 545 mm and 424 mm, the yield was 10.63 × 103 kg/ha 
and 10.52 × 103 kg/ha, and the field water use efficiency was 0.8 and 
0.99 for the 4th and 43rd alternatives, respectively. The results reveal 
that the variation degree of water allocation is higher than the changed 
ranges of the yield. This can be explained by reasons that excessive 
water allocation will exceed the field capacity and further generate deep 
infiltration that is ineffective for increasing crop yield. 

The differences in irrigation dates of the four alternatives are rela-
tively small. The reasons are that the irrigation date is affected by the 
soil water content (SWC) and water allocation pattern. For one soil type, 

the SWC and associated water stresses (e.g., water stress influencing 
canopy development) at different growth periods are affected by irri-
gation amounts at various irrigation periods. In general, a higher irri-
gation amount at the first irrigation will lead to a delayed second 
irrigation date, belonging to a dynamic balanced process. For different 
soil types, the water stress will be smallest for the soil type with the 
lowest water difference between the field capacity and wilting point 
under the same irrigation amount. This means that the irrigation date of 
the crop with the soil type with lower water stress will be delayed 
compared with other soil types, but it is also influenced by the water 
allocation amount at each irrigation date, presenting a dynamic 
balanced process. 

Table 4 shows the results of the total yield, water allocation, net 
economic benefit, and field water use efficiency of the 4th, 43rd, 31st, 
and 33rd alternatives. This indicates that the 31st alternative can ach-
ieve the maximum net economic benefit but the smallest field water use 
efficiency, while the 33rd alternative presents the opposite tendency. 
The net economic benefit and field water use efficiency under the 4th 
and 43rd alternatives stand between the 31st and 33rd alternatives. This 
result reveals that yield and net economic benefit are positively corre-
lated with water allocation, while field water use efficiency is negatively 
correlated with water allocation. This implies that water stress is hard to 
avoid and exists in some periods throughout the growth period because 
of limited irrigation times. More water allocation will shorten the times 
of water shortages and alleviate the degree of water shortages, which is 
beneficial to crop growth and yield. In summary, managers could select 
corresponding optimal irrigation scheduling on the basis of the above 
four alternatives. Compared with prospect theory, optimal irrigation 
scheduling selected by the TOPSIS method is more likely to achieve a 
higher net economic benefit. This is because subjective weights play an 
important role in final decisions, and objectives with higher weights will 
have more probability to be chosen. The irrigation scheduling chosen by 
the prospect theory method tends to reach higher field water use effi-
ciency. This is because the negative prospect value of the net economic 
benefit is larger than that of the field water use efficiency due to its 
higher decision weight, and the changing degree of the positive prospect 
value is larger than that of the negative prospect value. Therefore, if 
managers want to achieve optimal irrigation scheduling with slight 
preferences on the net economic benefit, they could select the 4th 
alternative. Otherwise, they could choose the 43rd alternative. 

4.2. Spatial distribution of the field water use efficiency and net economic 
benefit 

Fig. 7 (a) and (b) show the spatial distributions of the field water use 
efficiency and net economic benefit. The field water use efficiency and 
net economic benefit of ten DMUs are calculated separately and spread 
on a spatial scale. Fig. 7 (a) indicates that wheat has a relatively small 
planting area, and the field water use efficiency is 0.998, 0.995, and 
0.994 for T1, T3, and T4, respectively. Field corn is mainly planted in the 
northwest under T1, T3, and T4. The field water use efficiencies are 
0.96, 0.91, and 0.86. The seed corn has the largest planting area, planted 
in four soil types, and distributed in the west and southwest districts, and 
the field water use efficiency represents 0.86, 0.83, 0.807 and 0.81 for 
the four soil types, respectively. This indicates that wheat possesses the 
largest field water use efficiency, ranked by field corn and seed corn. 
This is because wheat has the smallest water allocation and field corn 
retains the largest yield per area compared with other crops. 

Fig. 7 (b) reveals that seed corn has the largest net economic benefit, 
followed by field corn and seed corn, which are comprehensive results of 
planting area, yield per area and crop price. Taking T3 as an example, 
the planting areas of wheat, field corn and seed corn are 260 ha, 700 ha, 
and 2573 ha, respectively. The yield per area of these three crops was 
7.6 × 103 kg/ha, 11.49 × 103 kg/ha, and 10.63 × 103 kg/ha, respec-
tively, and the crop prices were 2.43 Yuan/m3, 1.82 Yuan/m3 and 2.5 
Yuan/m3, respectively. The net economic benefit presented above 

Fig. 5. Indicator values calculated by TOPSIS and prospect theory methods for 
50 alternatives, where the 4th and 43rd alternatives possess the maximum 
values of the two methods. 
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considers the comprehensive effects of planting areas, yield per area and 
crop prices, which can help managers grasp the spatial distribution rules 
of crops with different attributes and further reach higher field water use 
efficiency and net economic benefit. 

4.3. Irrigation scheduling in the current year and future year 

Fig. 8 shows the daily potential evapotranspiration (PET) and rainfall 
during the whole growth period of the three crops in 2012 and 2021. The 
PET in 2021 (812 mm) is smaller than that in 2012 (913 mm), while the 

Fig. 6. (a), and (b). Optimal irrigation amounts and irrigation dates of ten DMUs at different growth periods for 4th, 43rd, 31st, 33rd alternativesNote 
FT, ST, TT and FT represent the first irrigation event, the second irrigation event, the third irrigation event, and the fourth irrigation event at the jointing stage, 
heading stage, grouting and mature stages, respectively. 

Table 4 
YID yield, water allocation (WA), net economic benefit (NB) and field water use 
efficiency (FWUE) for the 4th, 43rd, 31st and 33rd alternatives.  

Items Yield (104 kg) WA (104 m3) NB (104 Yuan) FWUE 

4th alternative 1018.5 4670.4 18063.79 0.85 
43rd alternative 1013.3 4307.7 17998.66 0.91 
31st alternative 1020.2 4795.2 18070.81 0.84 
33rd alternative 1007.7 4151.2 17916.53 0.93  
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rainfall in 2021 (135 mm) is higher than that in 2012 (116 mm). The 
Pareto frontier (optimal irrigation scheduling) in 2021 is optimized and 
compared with the Pareto frontier in 2012 because actual crop evapo-
transpiration and water allocation are affected by PET and rainfall, and 
the result is shown in Fig. 9. 

Fig. 9 illustrates that the maximum and minimum net economic 
benefits in 2021 are both larger than those in 2012, and field water use 
efficiency presents the same tendency as the net economic benefit. This 
means that the same net economic benefit in 2021 requires less water 
allocation compared with 2012 because rainfall in 2021 is higher and 
steady than that in 2012. The 43rd and 33rd alternatives represent the 
extreme conditions with maximum field water use efficiency and 
maximum net economic benefit. The 33rd and 24th alternatives in 2021 
chosen by the TOPSIS and prospect theory methods, respectively, are 
compared with the 43rd and 4th alternatives in 2012, as shown in 
Table 5. 

The 4th and 24th alternatives selected by the TOPSIS method as one 
group and 43rd and 33rd alternatives as one group are compared 
separately, according to the different alternative selection methods. 
Compared with the 4th alternative, the 33rd alternative has higher 
yields, net economic benefits and field water use efficiency. Compared 
with the 43rd alternative, the 24th alternative has a higher yield and 
lower field water use efficiency. The above phenomena are generated 
because rainfall distributions during the whole growth period in 2021 
are increasingly even higher than those in 2012, resulting in smaller 
water stresses and higher yields. Consequently, the different alternatives 
have various emphases. If managers want to achieve higher net eco-
nomic benefits in the future year, they can choose the 33rd alternative. 
Otherwise, they can select the 24th alternative. 

5. Discussion 

This section is composed of (1) a comparison of the differences in 
irrigation scheduling with varied irrigation dates and fixed irrigation 

dates and (2) a comparison with interval quadratic programming (IQP). 

5.1. Comparison of irrigation scheduling with fixed irrigation dates 

The irrigation scheduling with fixed irrigation dates is compared 
with the optimal irrigation scheduling under 4th and 43rd alternatives 
in 2012 because the irrigation date affects the yield and field water use 
efficiency, where water allocation on fixed irrigation dates is set to be 
the same for the 4th and 43rd alternatives to make sure that the only 
difference of the optimization model is the irrigation date. In addition, 
the results are shown in Table 6. 

5.2. Comparison with interval quadratic programming (IQP) 

Li et al. developed the IQP model to optimize irrigation water re-
sources among wheat, field corn and seed corn (Li et al., 2017). They 
fitted interval quadratic water production functions to express the 
relationship between water allocation and crop growth. The water 
allocation is presented as interval numbers to express uncertainties in 
decisions. The irrigation water amounts were [75.64, 89.15] cm, [70.82, 
75.33] cm and [53.37, 55.31] cm for field corn, seed corn and wheat, 
respectively. Taking the 4th alternative as an example, the water allo-
cation amounts are 52.6 cm, 53.0 cm and 46.4 cm for field corn at 
DMU1, DMU2 and DMU3, respectively. The water allocation amounts 
were 44.7 cm, 53.8 cm, 45.2 cm and 54.5 cm for seed corn at DMU4, 
DMU5, DMU6 and DMU7, respectively. The water allocation amounts 
were 33.4 cm, 40.3 cm and 41.7 cm for wheat at DMU8, DMU9 and 
DMU10, respectively. The results reveal that the water allocation 
amount obtained from the spatially-distributed AquaCrop-MORPP 
model is smaller than that of the IQP model because the IQP model only 
considers the objective of maximum yield, resulting in water allocation 
around the water threshold corresponding to maximum yield. Namely, 
compared with the IQP model, the spatially-distributed Aqua-
Crop-MORPP model can optimize the irrigation amount and irrigation 
date concurrently and achieve water savings and is more advantageous. 
The yield per area obtained from the IQP model represents 11.47 
ton/ha, 9.94 ton/ha and 6.98 ton/ha for field corn, seed corn and wheat, 
respectively. The yield per area was 11.24 ton/ha, 11.50 ton/ha, and 
11.78 ton/ha for the field corn at the three DMUs, respectively. The yield 
per area was 10.47 ton/ha, 10.76 ton/ha, 10.28 ton/ha and 10.63 
ton/ha for the seed corn at the four DMUs. The yield per area was 7.21 
ton/ha, 7.35 ton/ha and 7.6 ton/ha for wheat at the three DMUs. The 
yield per area of the field corn obtained from the spatially-distributed 
AquaCrop-MORPP model covers the yield attained from the IQP 
model, and the yield of the seed corn and wheat is larger than that of the 
IQP model. This is because optimizing the irrigation amount and irri-
gation date can both improve the crop yield. It also indicates that the 
spatially-distributed AquaCrop-MORRP model could improve yield 
compared with the IQP model, which is more applicable to conduct 
irrigation water resource management. The advantages, disadvantages 
and contributions of the distributed AquaCrop-MORPP model and IQP 
model are shown in Table 7. 

6. Conclusion 

In this study, a distributional optimal decision-making framework 
was built to optimize irrigation scheduling (irrigation date and irrigation 
amount) under uncertainties. It established a spatially-distributed 
AquaCrop-MORRP model and developed TOPSIS and prospect theory 
methods to select alternatives to provide managers with relatively op-
timum alternatives from different views. The developed approach was 
employed in the Yingke Irrigation District (YID), Heihe River Basin 
(HRB), to verify its application. The results showed that the maximum 
field water use efficiency and net economic benefit in 2021 were higher 
than those in 2012. The irrigation scheduling with varied irrigation 
dates was more advanced than the irrigation scheduling with fixed 

Fig. 7. (a), and (b). Spatial distributions of the field water use efficiency and 
net economic benefit for ten DMUs. 
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Fig. 8. (a) and (b). Daily evapotranspiration and rainfall during the whole crop growth period in 2012 and 2021.  

Fig. 9. Pareto frontier composed of 50 groups of optimal Pareto solutions and respective positive and negative ideal points for 2012 and 2021.  
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irrigation dates. Optimal irrigation scheduling could save water and 
improve the yield compared with interval quadratic programming 
(IQP). It was proven to be a reliable and effective tool for dealing with 
irrigation scheduling optimization in semiarid and arid districts. 

It has the following advantages: (1) the optimized irrigation amount 
and date could be optimized simultaneously. (2) It could balance the 
contradictory relationship between field water use efficiency and net 
economic benefit measured by the spatially-distributed AquaCrop 
model. (3) It can handle uncertainties characterized by fuzzy numbers 
and stochastic variables. (4) It could select alternatives considering the 
risk attitudes and subjectivities of managers and obtain the optimal 
Pareto frontier under the current and future RCP4.5 scenarios. 

The developed model showed performances of the distributed 
AquaCrop- MORRP model in optimizing irrigation schedules in the arid 
and semi-arid districts. However, a disadvantage of the model is that the 
running time is so high, reaching about a week, which is because there 
are many time of interactions between distributed AquaCrop model and 
the optimization model concerning multiple calling external program-
ming. Formulating a replace model with the same functions with the 

distributed AquaCrop model but higher running efficiency to couple 
with optimization model to optimize irrigation schedules which will be 
explored in the future studies. 
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Table 5 
The yield, water allocation (WA), net economic benefit (NB), and field water use 
efficiency (FWUE) of the YID for the 4th, 24th, 43rd and 33rd alternatives.  

Items Yield (104 kg) WA (104 m3) NB (104 Yuan) FWUE 

4th alternative 1018.5 4670.4 18063.79 0.85 
24th alternative 1021.6 4425.6 18280 0.88 
43rd alternative 1013.3 4307.7 17998.66 0.91 
33rd alternative 1022.9 4465.1 18303 0.87  

Table 6 
The yield, water allocation (WA), net economic benefit (NB), and field water use 
efficiency (FWUE) of the YID for the 4th and 43rd alternatives and alternatives 
with fixed irrigation dates.  

Items Yield (104 kg) WA (104 m3) NB (104 Yuan) FWUE 

4th alternative 1018.5 4670.4 18063.79 0.85 
Fixed irrigation dates 960.79 4670.4 17191 0.82 
43rd alternative 1013.3 4307.7 17998.66 0.91 
Fixed irrigation dates 960.32 4307.7 17182 0.87 

The irrigation scheduling with varied irrigation dates is more advanced than that 
with fixed irrigation dates for both the 4th and 43rd alternatives. The results 
show that compared with irrigation scheduling with fixed irrigation dates, 
optimizing irrigation dates will increase yields by 6% and 5%, net economic 
benefits by 5% and 4%, and field water use efficiencies by 4% and 4% for the 4th 
and 43rd alternatives, respectively. Therefore, irrigation scheduling with varied 
irrigation dates has higher robustness and advantages than irrigation scheduling 
with fixed irrigation dates. 

Table 7 
advantages, disadvatages and contributions of the distributed AquaCrop- 
MORPP model and IQP model.  

models advantages Disadvantages Contributions 

Distributed 
AquaCrop- 
MORPP 
model 

Get Pareto 
solutions 
considering 
crop growth 
process and 
multiple 
objectives and 
uncertainties 

Calculation 
efficiency is 
relatively low 

Develop a technique 
combing simulation 
model and 
optimization model, 
and deal with multiple 
uncertainties in the 
model 

IQP model Get optimal 
solutions in 
interval 
numbers, and 
improve 
robustness of 
decisions 

The optimal 
solutions are lack 
of spatially- 
distribution 
precision 

Identify uncertainties 
in the agricultural 
water resources 
systems  
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