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A B S T R A C T

A double-sided stochastic chance-constrained linear fractional programming (DSCLFP) model is developed for
managing irrigation water under uncertainty. The model is developed by incorporating double-sided stochastic
chance-constrained programming (DSCCP) into a linear fractional programming (LFP) optimization framework.
It can address ratio optimization problems with double-sided randomness (i.e. both left-hand and right-hand
sides). More importantly, it also improves upon the existing stochastic chance-constrained programming for
handing random uncertainties in the left-hand and right-hand sides of constraints simultaneously. A non-
equivalent but sufficient linearization form of the DSCLFP is provided and proved, which will greatly reduce the
computational burden. Then, the model is applied to a case study in Yingke Irrigation District (YID) in the middle
reaches of the Heihe River Basin, northwest China. Four confidence levels (e.g. αi=0.85, 0.90, 0.95 and 0.99)
are provided to examine and compare the results. The objective function values are slightly decreased from
5.284 Yuan/m3 to 5.276 Yuan/m3 when αi level is raised from 0.85 to 0.99. The results from the DSCLFP can
identify desired irrigation water allocation plans under the objective function of maximizing water productivity
under different confidence levels. Therefore, the results can provide tradeoffs among water productivity, con-
fidence level and constraint-violation risk level. Moreover, comparisons with double-sided stochastic chance-
constrained linear programming (DSCLP) model and deterministic model are introduced to highlight advantages
and feasibility of the developed model. Therefore, these results can provide decision-support for managers in
arid areas.

1. Introduction

Under the pressures of the increasing water demands and the
shortages of water supply, sustainable water management is becoming
an issue of great significance for water managers throughout the world,
especially in arid areas dominated by irrigated agriculture (Elliott et al.,
2014; Kang et al., 2017). There is a concern that the water productivity
need to be addressed in irrigation water management problems due to
water scarcity. In other words, this is a conflicting objective to max-
imize the system benefits with minimum irrigation water use. Gen-
erally, water productivity is defined as a ratio representing the unit of
outputs (e.g. crop yield, economic benefits) per unit of irrigation water
(Barker et al., 2003). Such a ratio optimization problem can be quan-
titatively solved by linear fractional programming (LFP) method, which
is effectively used to account for conflicting objectives and reflect

system efficiency (Lara and Stancu-Minasian, 1999; Gómez et al., 2006;
Zhu and Huang, 2011; Stancu-Minasian, 2012; Zhang and Guo, 2018).
Compared with traditional methods, the LFP is superior to them to
compare multiple objective directly through the original magnitudes
(Guo et al., 2014). Particularly, it’s adopted in the management pro-
blems that need to compare two magnitudes (e.g. output/input).

Moreover, another concern is the inherent uncertainty in practical
applications. For example, spatial and temporal changes in surface
runoff and groundwater, fluctuations of market prices effected by var-
ious stochastic factors (Li et al., 2010), which are closely related to
input parameters and hardly quantified accurately. Additionally, the
interrelationships among these uncertain factors and economic im-
plications may cause challenges in planning irrigation water manage-
ment due to system complexities (Tan et al., 2011; Li et al., 2012).
Therefore, it is imperative to develop novel method to deal with these
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concerns and generate irrigation water allocation plans for supporting
sustainable irrigation water management.

Previously, three main types of inexact mathematical programming
methods were proposed including interval-parameter linear program-
ming (ILP), fuzzy mathematical programming (FMP) and stochastic
mathematical programming (SMP) to address uncertainties. Among
them, SMP method is exclusively for handling random variables ex-
pressed as known probability density functions (PDFs) in the model’s
input information (Gu et al., 2013; Guo et al., 2014; Zhang et al., 2017).
This means that when uncertain parameters can be described, results
can be presented as comparisons under different reliability levels. As a
major type of SMP, chance-constrained programming (CCP) initially
developed by Charnes and Cooper (1959) allows violation of system
constraints, indicating that not all of the constraints must be rigorously
satisfied. Thus, the random constraints can be hold at least a certain
probability α, where ∈α [0, 1] is defined as confidence level given by
the decision-makers. This will normally increase the system benefits to
a certain extent at a compromise of environmental capacity in irrigation
water management problems. Generally, due to the nonlinear forms in
solving CCP problems, it’s commonly employed in the case of the in-
dependent right-hand side randomness in constraints (Huang, 1998;
Zhu and Huang, 2011; Nemirovski, 2012). For example, Huang (1998)
proposed an inexact CCP method for water quality management where
stochastic uncertainties exist in the right-hand side of constraints. Zhu
and Huang (2011) developed a stochastic linear fractional program-
ming for solid waste management where the right-hand side coeffi-
cients are random for all α values. Moreover, the CCP methods in-
corporated with the randomness in the left-hand side of the constraints
have also been developed. For example, Cao et al (2011) developed an
interval left-hand-side CCP method for regional air quality manage-
ment. Sun et al (2013) developed an inexact joint-probabilistic left-
hand-side CCP model for solid waste management. Zhang et al (2017)
proposed an interval multistage joint-probabilistic CCP model with left-
hand-side randomness for crop area planning. However, in practice,
random uncertainties may exist in both left-hand side and right-hand
side of the constraints, which will thereby lead to the above-mentioned
CCP methods not account for such a difficulty. Therefore, based on the
assumption of both left-hand and right-hand sides of randomness have
Gaussian distributions and α≥ 0.5 (α is the satisfaction degree of
constraints) (Roubens and Teghem, 1991; Huang, 1998), a double-sided
stochastic chance-constrained programming (DSCCP) method is useful
for solving above difficulties (Liu, 2009). Although the algorithm of the
DSCCP can be directly proved by mathematical proof, its nonlinear
forms will inevitably intensify challenges in practical applicability.
Furthermore, the DSCCP method can hardly account for ratio optimi-
zation problems and few scholars handled double-sided random/sto-
chastic issues with LFP models. Nevertheless, few applications of the
DSCCP method to irrigation water management are conducted.

Therefore, the objective of this study is to develop a novel method to
address ratio optimization problems in the case of double-sided
random/stochastic uncertainties in the constraints. It is an attempt to
develop such a double-sided stochastic chance-constrained linear frac-
tional programming (DSCLFP) model by incorporating the DSCCP into a
LFP framework for supporting irrigation water management under
uncertainty. It can improve upon the existing stochastic chance-con-
strained programing by dealing with double-sided randomness.
Moreover, to reduce computational burden and improve computational
efficiency, a non-equivalent but sufficient linearization form of DSCLFP
model will be provided and proved for comparisons. To demonstrate its
applicability, the developed model will be applied to a case study to
manage irrigation water to different crops in the Yingke Irrigation
District (YID) in the middle reaches of the Heihe River Basin, northwest
China. Several scenarios associated with confidence levels will be
analyzed for examining and comparing the variations of results.

2. Methodology

2.1. Linear fractional programming (LFP)

In a linear fractional programming (LFP) problem, it is generally
considered as a functional relationship expressed as a ratio between two
variables in the numerator and denominator (Charnes and Cooper,
1962). The numerator represents the change in total cost and other
variables while the denominator represents the volume changes that
may lead to the change of the related cost coefficients. Therefore, LFP
can deal with bi-objectives problems and reflect system efficiency. It
can be formulated as follows:

= +
+

f CX α
DX β

max
(1a)

subject to:

⩽AX B (1b)

⩾X 0 (1c)

where A is a real m× n matrix; X and B are column vectors with n and
m components respectively; C and D are row vectors with n compo-
nents; α and β are constant terms. The LFP model can address de-
terministic ratio-optimization problems, but it is not able to deal with
complexities when uncertainties exist in the constraints of optimization
model (Zhu and Huang, 2011).

2.2. Double-sided stochastic chance-constrained programming (DSCCP)

In a linear programming model, when both left-hand (aij) and right-
hand side (bj) parameters in the constraints are to be independently
normally distributed random variables (µ is expected value and σ is
standard variation), and the constraints are hold at a certain level of
probability α. Then, the double-sided stochastic chance-constrained
programming (DSCCP) method can be adopted as follows:

∑=
=

f c xmax
j

n

j j
1 (2a)

subject to:

∑⎧
⎨
⎩

⩽
⎫
⎬
⎭

⩾ = ⋯
=

a x b α i mPr , 1, 2, ,
j

n

ij j i i
1 (2b)

∼a ω N μ σ( ) ( , )ij a ij a ij, ,
2

(2c)

b ξ N μ σ( )~ ( , )i b i b i, ,
2

(2d)

⩾ = ⋯x j n0, 1, 2, ,j (2e)

where f is the objective function; xj is decision variable; bi and cj are
input parameters; αi ( ∈α [0, 1]i ) refers to a given level of probability for
constraint i, representing the satisfaction degree level of constraints; m
is the number of constraints. According to Liu (2009), constraint (2b)
can be transformed into a nonlinear form and the set of feasible con-
straints is convex (see Theorem 1):

Theorem 1. Eq. (2b) is equivalent to Eq. (3a). That is, if aij and bi are
assumed to be independently normally distributed random variables,
then Eq. (2b) can be hold if and only if

∑ ∑+ + ⩽ = ⋯
=

−

=

μ x α σ x σ μ i mΦ ( ) , 1, 2, ,
j

n

a ij j i
j

n

a ij j b i b i
1

,
1

1
,

2 2
,

2
,

(3a)

where Φ is the standardized normal distribution function.

Proof. Since aij and bj are independently random variables following
normal distributions, let’s introduce the variable:

= ∑ − = ⋯
=

y a x b i m, 1, 2, ,i
j

n

ij j i
1

, it also follows normal distribution. Its
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expected value and variance are presented as follows:

∑= −
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μ μ x μy i
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, ,
(3b)
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Then, the expression:
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Thus, the chance constraint (2b) can be converted into:
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where z is defined as the standardized normally distributed random
variable. Therefore, the chance constraint (3e) can be satisfied if and
only if
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Finally, we have the deterministic equivalent of chance constraint
(3a). The Theorem 1 is proved.

Because Eq. (3a) is presented as nonlinear form, it will intensify
computational burden when solving problems. As an alternative solu-
tion method, an approximated linearization form of Eq. (3a) is proposed
(see Theorem 2).

Theorem 2. Eq. (4a) is a sufficient condition for Eq. (3a) where ⩾α 0.5i
and ⩾x 0j .
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Proof. Based on the following inequality,
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Moreover, when ⩾α 0.5i , we have
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Thus, from inequalities (4c) and (4d), we have
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Understandably, if inequality (4a) holds (sufficient condition), then
from inequality (4e), we have (3a).

Therefore, according to Theorems 1 and 2, when ⩾α 0.5i and ⩾x 0j ,
Eq. (2b) can be transformed into a non-equivalent but sufficient line-
arization form in (5a).
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2.3. Double-sided stochastic chance-constrained linear fractional
programming (DSCLFP)

In this study, a DSCLFP model is developed in response to ratio
optimization problems with double-sided randomness in the con-
straints. It incorporates DSCCP model into LFP optimization framework.
The developed DSCLFP model is written as follows:
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Alternatively, by using inequality (5a) substituting constraint (6b),
we have a linearization form of DSCLFP model.
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2.4. Solution method

The framework of the developed DSCLFP model is graphically
presented in Fig. 1. The detailed solution method can be further sum-
marized as follows:

Step 1: Formulate the DSCLFP model.
Step 2: Acquire the model input parameters including deterministic

values and independently normally distributed random variables
(probabilistic distributions).

Step 3: Convert stochastic chance constraints into deterministic ones
through the DSCCP method by giving a certain confidence level (αi) for
each constraint i.

Step 4: Reformulate the deterministic DSCLFP model.
Step 5: Solve the deterministic model and obtain solutions.
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Step 6: Repeat steps 3–5 under different confidence levels and ob-
tain final decision solutions.

3. Case study

3.1. Study area

The Yingke Irrigation District (YID) is one of the three major irri-
gation areas in the middle reaches of the Heihe River Basin. It’s located
in Zhangye City, Gansu Province, northwest China (100°17′–100°34′ E,
38°50′–38°58′N) (Fig. 2). It’s a highly developed agricultural zone with
a typical inland arid climate where 68% of the overall area (13147 ha)
are arable lands that particularly need to be irrigated. The mean annual
temperature is 7.0 °C. The annual sunshine hours are over 3000 h and
the frost-free period is around 140 days. The mean annual precipitation
is merely 125mm and annual ET is about 1200mm. However, over
80% of the precipitation is concentrated between July and September.
In the YID, the main types of crops are maize (e.g. field maize and seed
maize), spring wheat and economic crops because of their over-
whelmingly larger proportion of the total planting area (Jiang et al.,
2015). Meanwhile, economic crops mainly refers to vegetables in the
study area. The growth period of spring wheat is from April to July, and

the growth period of maize is from April to September. Soil texture is
dominated by sandy loam and loam. Agricultural water consumptions
including surface water and groundwater, and surface water is mostly
used for agricultural irrigation (i.e. accounting for more than 90%).
Moreover, traditional irrigation patterns such as flood and furrow
methods are commonly adopted, which is a cost-effective way but with
a lower irrigation water efficiency. Groundwater pumping can com-
pensate insufficient part of surface water due to seasonal variations and
untimely events. Agricultural irrigation water is physically transported
to field crops through a multi-layered canal system from water sources,
including one main canal, and eleven sub-canals. Among them, all the
main canal, nearly 97% of secondary canals and 60% of tertiary canals
have been lined (Jiang et al., 2016). Therefore, in the YID, the irrigation
water use coefficients of surface water and groundwater are 0.52, 0.60,
respectively.

3.2. Problem statement

A manager is responsible for allocating limited irrigation water re-
sources to four types of crops. Due to irrigation water shortages and
little precipitation in arid areas, there is a growing competition among
different water users (crops). Moreover, crop water production function
(CWPF) is selected as the basis of irrigation planning because it can
describe mathematical relationships between crop production (i.e. crop
yield or dry biomass) and water use (i.e. evapotranspiration). CWPFs
for different crops are generally expressed as polynomial function, and
linear CWPFs are selected because their simple form can facilitate the
further promotion of the study model. Table 1 presents the linear
CWPFs for the study crops. These CWPFs are obtained by fitting the
experimental data of crop yields and actual evapotranspiration. Table 2
presents the basic input data of the study area and crops, including crop
planting area, crop price, and cost of per unit of irrigation surface water
and groundwater, effective precipitation and maximum evapo-
transpiration. These related parameters are acquired from government
reports and statistical data.

In fact, there are some uncertain factors in agricultural systems. For
example, surface water and groundwater availabilities, and the rates of
surface water and groundwater loss during conveyance usually show
randomness. In response to these existing problems, rational assump-
tions and simplifications of input parameters are needed to analyze the
management system and tackle uncertainties. Thus, it is assumed that
there are sufficient historical records for determining the random dis-
tributions, namely, normal distributions (see Figs. 3 and 4). Specifi-
cally, the surface water and groundwater availabilities are
N (10195, 1200 )2 ×104m3 and N (4300, 1000 )2 ×104m3. The rates of
surface water and groundwater loss during conveyance are
N (0.25, 0.0167 )2 and N (0.15, 0.0167 )2 . Therefore, an optimization model
integrating linear CWPFs is developed for effective managing irrigation
water to allocate them to different crops under uncertainty.

3.3. Application of the DSCLFP model

In this study, the difficulties of optimizing irrigation water alloca-
tion include: (1) how to deal with double-sided random uncertainties in
the system; (2) how to address system efficiency (i.e. water

Fig. 1. The framework of study.

Fig. 2. The study area.

Table 1
Linear crop water production functions.

Crop Linear CWPFs

Field maize = +Y ET0.7243 6746.6
Seed maize = +Y ET0.5216 6658.5
Spring wheat = +Y ET0.6061 3688.7
Economic crops = +Y ET0.4875 1308.5

Note: Y is crop yield (kg/ha); ET is actual evapotranspiration
(m3/ha).
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productivity); (3) how to allocate irrigation water to different crops to
achieve maximum system efficiency and (4) how to identify optimal
irrigation water allocation solutions under given confidence levels.
Therefore, a double-sided stochastic chance-constrained linear frac-
tional programming (DSCLFP) model is developed under uncertainty.
The objective is to obtain maximum system benefits per unit of the
allocated irrigation water. Meanwhile, a series of constraints should be
provided by involving all the relationships between the decision vari-
ables and system conditions. The DSCLFP model is formulated as fol-
lows:

Objective function:

=

=

∑ − + + + +

− ∑ +

∑ +

=

=

=

f

A NB CP a SW GW P b SC

A CS SW η CG GW η

A SW η GW η

max
Net system benefits

Total irrigation water amount

(( )[ ( ) ] )

( / / )

( / / )

j
j j j j j j e j j

j
j j j s j j g

j
j j s j g

1

4

1

4

1

4

(8a)

Net system benefits represent the total system benefits minus costs
of crop productions, irrigated surface water and groundwater use. Total
irrigation water amount represents the irrigated surface water and
groundwater use through irrigation water allocation solutions. There is
an assumption that the amount of irrigation water demands during the

whole growth period is the sum of irrigation water and effective pre-
cipitation due to higher management level (Tong and Guo, 2013).

where f is objective function (Yuan/m3), its physical meaning is to
maximize economic water productivity in irrigation water management
problems; j denotes the crop types (j=1 for field maize, j=2 for seed
maize, j=3 for spring wheat, j=4 for economic crops); Aj is planting
area of crop j (ha); NBj is crop price of crop j (Yuan/kg); CPj is the cost
of crop production for crop j, including all the costs such as seed, fer-
tilizer, pesticides, machinery, harvesting and other costs (Yuan/kg); aj
and bj are the empirical coefficients of the linear CWPFs for crop j; SWj

and GWj are the decision variables denoting the amount of irrigated
surface water and groundwater for crop j (m3/ha); Pe is the effective
precipitation of the study area (m3/ha); SCj is subsidies for food crops
per unit of area (Yuan/ha); CSj and CGj are the cost of surface water and
groundwater use per unit of irrigation water (Yuan/m3); ηs and ηg are
the comprehensive irrigation water use coefficients of surface water and
groundwater.

Constraints:
(1) Surface water availability constraints

∑⎧
⎨
⎩

+ ⩽
⎫
⎬
⎭

⩾ ∀
=

λ A SW Q η β α iPr (1 ) ,
j

s j j s s s i
1

4

(8b)

Table 2
Basic related input parameters.

Crop Aj(ha) NBj(Yuan/kg) Pe(m3/ha) ET jmax, (m3/ha) CSj(Yuan/m3) CGj(Yuan/m3) CPj(Yuan/m3) SCj(Yuan/ha)

Field maize 2230 2.42 903.50 7818 0.16 0.40 0.45 300
Seed maize 4554 5.02 7856 0.16 0.40 0.60 300
Spring wheat 2886 2.04 5842 0.16 0.40 0.45 300
Economic crops 2876 3.58 5030 0.16 0.40 0.60 0

Fig. 3. Cumulative distribution of the surface water and groundwater avail-
abilities (104 m3).

Fig. 4. Cumulative distribution of the rates of water loss during surface water
and groundwater conveyance.
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(2) Groundwater availability constraints

∑⎧
⎨
⎩

+ ⩽
⎫
⎬
⎭

⩾ ∀
=

λ A GW Q η β α iPr (1 ) ,
j

g j j g g g i
1

4

(8c)

Constraints (8b and 8c) are stochastic chance constraints, indicating
that such constraints can be satisfied at a certain confidence level αi and
the admissible risk of constraint violating −α(1 )i .

λs and λg are the rates of surface water and groundwater loss during
water conveyance that are presented as random variables following
normal distributions, respectively. Qs and Qg are the surface water and
groundwater availabilities, which are also expressed as random vari-
ables following normal distributions (104m3). βs and βg are the pro-
portion of surface water and groundwater used for irrigation. In this
study, =β 0.9s and =β 0.9g in the above constraints.

(3) Irrigation water demand constraints

⩽ + + ⩽ ∀ET SW GW P ET j,j j j e jmin, max, (8d)

where ET jmin, and ET jmax, denote the minimum and maximum evapo-
transpiration for each crop j, indicating the fluctuation of actual irri-
gation water requirements for crops. Thus, constraint (8d) means that
each crop should be irrigated within a certain range between maximum
and minimum evapotranspiration.

(4) Non-negative constraints

⩾ ⩾ ∀SW GW j0 , 0,j j (8e)

Therefore, by solving the model based on the solution algorithms
(see Section 2.4), we have solutions under different confidence levels:
fopt , SWj opt, and GWj opt, .

4. Results and discussion

4.1. Results analysis

Four confidence levels (αi=0.85, 0.90, 0.95 and 0.99) are in-
troduced to investigate the satisfaction degree level of constraints and
compare the results of the DSCLFP model. Accordingly, the risk levels of
violating the constraints are presented as −α(1 )i , which can be inter-
preted as significance level or probability of constraints violation.
Table 3 presents optimal solutions resulting from the DSCLFP model
under four confidence levels. The results show that the available
groundwater is firstly utilized for irrigation because the allocated
groundwater is greater than that of the allocated surface water. For
example, when αi=0.99, optimal irrigation water allocation for four
crops are: 1063.58m3/ha (surface water) and 1551.02m3/ha
(groundwater) for field maize, 828.75m3/ha and 1802.95m3/ha for
seed maize, 0 and 1725.40 m3/ha for spring wheat, and 357.78m3/ha
and 1002.22m3/ha for economic crops. This can be explained by
groundwater has a higher irrigation water use coefficient and a lower
rate of water loss during water conveyance in contrast with surface
water (i.e. >η ηg s and <λ λg s). In terms of different confidence levels,
when αi is increased from 0.85 to 0.99, the overall trend of allocated
surface water is raised but allocated groundwater is decreased for field
maize, seed maize and economic crops. Spring wheat is an exception

due to unchanged results. Meanwhile, the sum of allocated surface
water and groundwater is exactly equal to the difference between their
minimum crop water requirements and effective precipitation. Ob-
viously, it is evident that those crops will be water-deficient, which can
be attributed to the efficiency-oriented objective function for achieving
the maximum system benefits with the minimum irrigation amount.

Fig. 5 presents the objection function values of the DSCLFP model
under different confidence levels. The results show that a high αi level
bring a lower ratio objective. For example, the objectives are decreased
from 5.284 Yuan/m3 to 5.276 Yuan/m3 when αi level is raised from
0.85 to 0.99. The variation trend of this ratio objective is in fact con-
sistent with the findings of previous similar research of a stochastic
linear fractional programming approach (Zhu and Huang, 2011). In
their paper, when pi is increased, then the ratio objective would be
increased accordingly. This is because the pi level means the probability
that the chance constraints can be violated, which is contrary to the
confidence level mentioned in this paper. The αi level means the sa-
tisfaction degree level of the constraints (i.e. = −α p1i i), and the ratio
objective represents the water productivity. Moreover, a higher αi level
corresponds to a lower constraint-violation risk level. Therefore, the
results can support in-depth of the interrelationship among the objec-
tive value, αi level and constraint-violation risk level. In fact, an in-
creased αi level can lead to an increased strictness for the system con-
ditions and then a narrower decision space. However, it is notable that
an increased αi level makes the system more reliable. Thus, an accep-
table and suitable level should be decided based on attitudes of man-
agers and stakeholders associated with conservative or positive choices.

The above analysis indicates that the DSCLFP model can effectively
address random information in its framework. It can also generate a
range of optimal solutions under different confidence levels. However,
it is worth mentioning that the DSCLFP model has computational
burden due to nonlinear forms of constraints, which will limit the scope
of application of this method. It is thus desirable to develop a compu-
tationally tractable solution algorithm to improve computational effi-
ciency and promote practical applications.

Table 3
Optimal solutions resulting from the DSCLFP model under four confidence levels (m3/ha).

Crop α=0.85 α=0.90 α=0.95 α=0.99

SW GW SW GW SW GW SW GW

Field maize 1039.93 1574.67 1044.49 1570.11 1051.19 1563.41 1063.58 1551.02
Seed maize 780.45 1851.25 789.76 1841.94 803.43 1828.27 828.75 1802.95
Spring wheat 0 1725.40 0 1725.40 0 1725.40 0 1725.40
Economic crops 327.27 1032.73 333.15 1026.85 341.79 1018.21 357.78 1002.22

Note: SW and GW denote the allocated surface water and groundwater.
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Fig. 5. The objection function values of the DSCLFP model under different
confidence levels (Yuan/m3).
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4.2. Comparison with linearization form of the DSCLFP

In response to this concern, a non-equivalent but sufficient linear-
ization form of the DSCLFP is proposed and proved through Theorems 1
and 2. Table 4 presents the results obtained from the linearization form
of the DSCLFP model under different confidence levels. Compared with
Table 3, the results of the two models are almost the same. This also
verifies the feasibility of the linearization form of the DSCLFP model.
Therefore, the linearization form of the DSCLFP model can be regarded
as a reasonable one and can enhance its practical implementations for
future promotion for address random uncertainties.

In terms of errors occurred by the linearization of the DSCLFP
model, which theoretically occurred in the process of the linearization
from nonlinear forms into non-equivalent linear one (Eq. (4b). When
the nonlinear left-hand side random coefficients are replaced by linear
forms, the left-hand side coefficients in the constraints become greater,
which may lead to an increased strictness for the constraints and thus
narrow down the feasible decision space to some extent. However, it
has an advantage of a highly efficient computational process to greatly
reduce computational time (Sun et al., 2013; Zhang et al., 2017).
Therefore, it should be an innovative and effective method to address
the DSCLFP model.

4.3. Comparison with double-sided stochastic chance-constrained linear
programming (DSCLP)

When the managers put more emphases on economic returns under
the objective function of maximizing system benefits, the DSCLFP
model can be transformed into a linear one, i.e. double-sided stochastic
chance-constrained linear programming (DSCLP). With the same input
parameters of deterministic and random information, results of the
DSCLP model can be obtained under given confidence levels. Table 5
shows optimal solutions of the DSCLP model under different αi levels.
Obviously, more surface water is utilized for irrigation in this case
because its lower cost of irrigation water use in contrast with ground-
water. This results can be explained by the objective function of the
benefit-oriented DSCLP model. With αi level increases, the variation
trends of allocated surface water is decreased for field maize and seed
maize and stays unchanged for spring wheat and economic crops. This
is contrary to the trend of efficiency-oriented DSCLFP model. Espe-
cially, when αi level is increased from 0.85 to 0.99, water productivity
resulting from the DSCLP model will be increased from 2.808 Yuan/m3

to 2.848 Yuan/m3, which is considerably lower than that from the
DSCLFP model. Such a significant difference between the DSCLFP and
DSCLP can be further demonstrated in the following analysis of the
system benefits and total irrigation water use.

Fig. 6 presents the system benefits resulting from two models under
a range of αi levels. Apparently, the DSCLP model brings approximately
20% higher system benefits than the DSCLFP model. For example, the
system benefits from the DSCLP model are 29643.09× 104 Yuan when
αi=0.85, 29624.31× 104 Yuan when αi=0.90, 29596.51×104 Yuan
when αi=0.95 and 29545.15×104 Yuan when αi=0.99. A higher
confidence level leads to a lower system benefits due to an increasing
strictness of constraints, which will lower the system-failure risk and
increase reliability level. Accordingly, achieving these system benefits
is inevitably at the expense of large amounts of irrigation water re-
sources. Fig. 7 presents the total irrigation water use obtained from two
models under different confidence levels. The total irrigation water use
of the DSCLP model is much greater than that of the optimal-ratio
model. Comparison between the two models shows that the DSCLP
model makes full use of irrigation water resources but the DSCLFP
model illustrates the water-saving potential of the YID. Therefore, the
DSCLFP model is clearly exemplified by the current results to utilize
irrigation water in an efficient manner.

4.4. Comparison with deterministic model

Without consideration of random information and uncertainties in

Table 4
Optimal solutions obtained from the linearization form of the DSCLFP model under different confidence levels (m3/ha).

Crop α=0.85 α=0.90 α=0.95 α=0.99

SW GW SW GW SW GW SW GW

Field maize 1039.96 1574.63 1044.53 1570.07 1051.23 1563.37 1063.65 1550.95
Seed maize 780.51 1851.19 789.834 1841.87 803.53 1828.17 828.89 1802.81
Spring wheat 0 1725.40 0 1725.40 0 1725.40 0 1725.40
Economic crops 327.32 1032.68 333.20 1026.8 341.86 1018.14 357.87 1002.13

Note: SW and GW denote the allocated surface water and groundwater.

Table 5
Optimal solutions of the DSCLP model under different αi levels (m3/ha).

Crop α=0.85 α=0.90 α=0.95 α=0.99

SW GW SW GW SW GW SW GW

Field maize 4049.46 0 3964.22 0 3838.11 0 3605.12 0
Seed maize 2584.63 4367.87 2599.85 4352.65 2622.36 4330.14 2663.91 4288.59
Spring wheat 1725.40 0 1725.40 0 1725.40 0 1725.40 0
Economic crops 4126.50 0 4126.50 0 4126.50 0 4126.50 0

Note: SW and GW denote the allocated surface water and groundwater.
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Fig. 6. System benefits resulting from the DSCLFP and DSCLP models under
different confidence levels (104 Yuan).
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the model, the DSCLFP model can be directly simplified into a de-
terministic linear fractional programming (LFP) model. Thus, only
singe solution can be generated by solving this model (see Table 6).
Moreover, this solution can be regarded as a special case in the solu-
tions resulting from the DSCLFP model. In such a case, the flexibility of
the solution is reduced. On the one hand, there are many uncertain
factors in the irrigation water resources planning problems, the tradi-
tional LFP model has some limitations in solving practical problems.
The obtained results through the newly developed model can provide
managers with more reliable and reasonable decision-making re-
commendations. In addition, the LFP model can only provide a set of
results, while the DSCLFP model can generate more results based on the
system conditions and managers' attitudes. This will undoubtedly pro-
vide managers with more reference information when making decision
plans. For example, under a lower confidence level, the system can
achieve greater water productivity but at the same time it must with-
stand higher constraint-violation risks. On the contrary, a lower water
productivity will be achieved with a reduced risk level. In summary, the
DSCLFP model not only has an enhanced applicability than the LFP
model, but it can also be used to better handle trade-offs between
economics, environment, and system reliability, and to provides more
effective choices for managers.

5. Conclusions

A double-sided stochastic chance-constrained linear fractional pro-
gramming (DSCLFP) model has been developed for supporting irriga-
tion water management problems under uncertainty. It can address
ratio optimization problems (i.e. water productivity) associated with
double-sided stochastic constraint-violation, where double-sided sto-
chastic chance-constrained programming (DSCCP) is incorporated into
a linear fractional programming (LFP) framework. It thus improves
upon the existing stochastic chance-constrained programming by ad-
dressing double-sided randomness simultaneously. Meanwhile, a non-
equivalent but sufficient linearization form of the DSCLFP model is
presented to reduce computational burden. Therefore, the DSCLFP

model has the following advantages in: (1) reflecting the ratio objective
of water productivity, (2) providing solutions under different con-
fidence levels and (3) supporting in-depth analysis of interrelationships
among water productivity, confidence level and constraint-violation
risk as well as reliability level.

A case study is provided for demonstrating the applicability of the
developed DSCLFP model, which is used to allocate limited irrigation
water resources to different crops in YID, northwest China. Optimal
solutions are useful for supporting managers to decide desirable choices
under different system conditions. Moreover, comparison with linear-
ization form of the DSCLFP model shows the effectiveness of the in-
novative method. Comparisons with double-sided stochastic chance-
constrained linear programming (DSCLP) model and deterministic
model can clearly highlight and reflect advantages and feasibility of the
developed model. Therefore, some meaningful findings are summarized
into following three aspects to prove worthiness of proposed study.
First, the results indicate that a high αi level bring a lower water pro-
ductivity, which will correspond to managers’ preferences regarding the
tradeoff between the water productivity and system constraint-viola-
tion risk. Accordingly, the results under different confidence levels refer
to different irrigation water management solutions and risk-violation
levels. Based on these results, managers can adjust their policies in
response to uncertain information. Second, to pursue a higher water
productivity will certainly improve irrigation water use efficiency but
water deficits undoubtedly occur in crop growth due to less allocated
irrigation water as well. From a positive perspective, the water-saving
potential of the YID is enormous, the saved water can be transferred to
other purposes for achieving higher ecological values and economic
benefits. Third, the linearization process of model can greatly enhance
practical applicability for address random uncertainties.

Although this study is the attempt for supporting irrigation water
management problems, the algorithms and results suggest that it can be
extended to other resources and environmental management problems.
Moreover, this study is based on the assumption of independently
normally random variables, which may have limitations when en-
countering more unidentified probability distributions. Thus, the
DSCLFP model still has space for future improvements. It can be po-
tentially enhanced by incorporating techniques of Monte Carlo sto-
chastic simulation, uncertainty analysis, fuzzy theory and dynamic
programming into its framework for tackling more complex applica-
tions.
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