
Science of the Total Environment 657 (2019) 73–86

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Towards sustainable water resources planning and pollution control:
Inexact joint-probabilistic double-sided stochastic chance-constrained
programming model
Chenglong Zhang a, Shanshan Guo a, Fan Zhang a, Bernard A. Engel b, Ping Guo a,⁎
a Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
b Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
H I G H L I G H T S G R A P H I C A L A B S T R A C T
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This study presents an inexact joint-probabilistic double-sided stochastic chance-constrained programming
(IJDSCCP) model for sustainable water resources planning and pollution control in water quality management
systems under uncertainty. Techniques of interval parameter programming (IPP), joint-probabilistic program-
ming (JPP) and double-sided stochastic chance-constrained programming (DSCCP) are incorporated into a
modeling framework. The IJDSCCP can not only address uncertainties presented as interval parameters and
double-sided randomness (i.e. both left-hand and right-hand sides) that are characterized as normal distribu-
tions, but also examine the reliability level of satisfying the entire system constraints. It further improves upon
conventional stochastic chance-constrained programming for handing random uncertainties in the left-hand
and right-hand sides of constraints. Moreover, a non-equivalent but sufficient linearization form of the IJDSCCP
is presented to solve such a problem. Then, themodel is applied to a representative case forwater resources plan-
ning and pollution control. The results including water resources planning solutions, pollution control plans and
system benefits under the combinations of different joint and individual probability levels will be obtained. The
solutions are expressed as combinations of deterministic, interval and distributional information, which can fa-
cilitate analysis of different forms of uncertainties. After investigating and comparing the variations of results,
it is found that an increasing joint probability level can lead to higher system benefits, i.e., [13,841.68,
21,801.81] × 106 Yuan (p = 0.01, p1 = 0.0033, p2 = 0.0033 and p3 = 0.0033), [14,150.26, 22,260.06] × 106

Yuan (p = 0.05, p1 = 0.0166, p2 = 0.0166 and p3 = 0.0166) and [14,280.55, 22,415.52] × 106 Yuan (p = 0.10,
p1 = 0.033, p2 = 0.033 and p3 = 0.033). A set of decreased individual probability levels gives rise to the
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maximum system benefits at the same joint probability level. Furthermore, the results of the IJDSCCP are com-
pared with a general interval-based optimization framework as well. Therefore, the results from the IJDSCCP
are valuable for assisting managers in generating and identifying decision alternatives under different scenarios.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Deterioration of water quality is currently one of the most pressing
environmental issues in many parts of the world (Loecke et al., 2017).
Globally, eutrophication (i.e., excess nutrients) has seriously affected
water ecosystems in lakes, rivers, streams and estuaries, thereby threat-
ening the safety of drinking water sources and leading to the formation
of anoxic zones in lakes and coastal areas, such as the Black Sea in East-
ern Europe, the Pearl River Delta in China, and the Gulf of Mexico and
Chesapeake Bay in the United States (Diaz and Rosenberg, 2008; G. Liu
et al., 2017; Schmidtko et al., 2017). Sources of pollution that cause
water quality damage are generally divided into two categories: point
sources and non-point sources. Point source refers to the discharge of
sewage into water bodies through independent drainage systems (e.g.
pipelines), such as municipal sewage treatment plants and industrial
wastewater treatment plants. Conversely, pollution from non-point
sources is often dispersed, such as agricultural runoff or urban runoff.
From a global perspective, most nutrient pollutions come from non-
point sources, mainly from agriculture (Ongley et al., 2010; Fanelli
et al., 2018). Water pollution and ecological deterioration problems
can undoubtedly impede socioeconomic growth. The system optimiza-
tion model, as an effective means of water quality management, can
comprehensively involve the management policies and interests of
multiple participants to obtain optimal decision-making solutions for
water quality management. Therefore, it is desired that effective strate-
gies of water resources planning and pollution control be taken to facil-
itate sustainable development (Zhang et al., 2015).

Water quality management faces new challenges, including ever-
increasing changes and the associated system uncertainties. For exam-
ple, the uncertainties and complexities arising from the variations in hy-
drological processes and meteorological conditions, dynamics of
pollution transport, interactions between pollutant loadings, and
water bodies, the standard of environmental capacity should be taken
into account (Babaeyan-Koopaei et al., 2003; Huang and Chang, 2003;
Xu and Qin, 2010; Li et al., 2012; Y. Liu et al., 2017; McMillan et al.,
2017). Therefore, many mathematical programming methods have
been developed for addressing these problems (Wen and Lee, 1998;
Qin et al., 2007; Kerachian and Karamouz, 2007; He et al., 2008; Qin
and Huang, 2009; Pouget et al., 2012; Zhang et al., 2014; Liu et al.,
2015; Zhang et al., 2015; Poff et al., 2016; Archibald and Marshall,
2018; Li et al., 2019). Generally, there are three main types of inexact
mathematical methods, interval mathematical programming (IMP),
stochastic mathematical programming (SMP) and fuzzy mathematical
programming (FMP). These methods and their combinations have
been extensively proposed to solve problems of environmental man-
agement and water quality management. As an effective SMP method
to address random uncertainties, chance-constrained programming
(CCP), initially introduced by Charnes and Cooper (1959), is suitable
for occasions in the presence of an abundant source of information.
Moreover, it is assumed that the constraints be satisfied at least proba-
bility (1− α) in a stochastic environment where α indicates the proba-
bility when system constraints are violated. This method does not
require that all the system constraints should be totally satisfied. Theo-
retically, it has the following main advantages in: (1) allowing specific
random constraints to be satisfied under given probability levels;
(2) providing information on tradeoffs between the system benefits
and system-failure risks and (3) enabling incorporation of other uncer-
tain optimization methods into a general framework to enhance its
applicability. Generally, the most-used CCP method is based on inde-
pendent right-hand side randomness in system constraints (Zare and
Daneshmand, 1995; Huang, 1998). For example, Zhu and Huang
(2011) proposed a stochastic linear fractional programming approach
for solid waste management and the right-hand side coefficients of
the constraints are random. Zhou et al. (2017) developed a stochastic
equilibrium chance-constrained programming model for supporting
solidwastemanagement inDalianCity, China.Wang et al. (2018) devel-
oped an inexact log-normal distribution-based stochastic chance-
constrained model for agricultural water quality management. How-
ever, the CCP method still has some limitations that need further
improvement.

Random uncertainties in fact may exist in both left-hand and right-
hand sides of the constraints, thereby indicating that the above CCP can-
not deal with such a difficulty due to the nonlinear forms of the deter-
ministic equivalents. Therefore, double-sided stochastic chance-
constrained programming (DSCCP) is considered as a promising
method for better accounting for this difficulty (Liu, 2009; Zhang et al.,
2018). For example, Zhang et al. (2018) developed a double-sided sto-
chastic chance-constrained linear fractional programming model for ir-
rigation water management under uncertainty. Moreover, the CCP also
fails to examine and analyze the interrelationships amongmultiple con-
straints, which are required to be satisfied at a joint probability level (Li
et al., 2009; Sun et al., 2013; Zhang et al., 2017). For example, when
conducting long-term planning for specific problems, it is noted that
the effects of changes of system components among different planning
periods and their dynamic interrelationships need to be considered.
Therefore, a joint-probabilistic programming (JPP) method is intro-
duced to reflect the requirement of the satisfactory level. Besides, not
all the collected data are good enough to be presented as precise ran-
dom distributions, which affects the applicability of the CCP. Therefore,
one potential direction to deal with this challenge is to introduce inter-
val parameter programming (IPP) to roughly measure the uncertain in-
formation. In summary, in response to above concerns, techniques
including DSCCP, JPP and IPP are incorporated into a general framework
to formulate an inexact joint-probabilistic double-sided stochastic
chance-constrained programming (IJDSCCP) model. Nevertheless, few
applications of the IJDSCCP to water resources planning and pollution
control have been reported.

Based on above analysis, the primary objective of this study is to de-
velop a novel approach for water resources planning and pollution con-
trol problems in water quality management systems, namely, IJDSCCP.
It is an improved method compared with general stochastic chance-
constrained programming due to its handling of double-sided random-
ness. Moreover, a non-equivalent but sufficient linearization form of the
IJDSCCP will be presented and proved. Therefore, it has the following
advantages for effectivelymanaging thewater quality. (1) It can address
uncertainties expressed as interval values and probability distributions;
(2) it can examine the reliability level of satisfying the entire system
constraints; (3) it can reduce computational burden for efficiently solv-
ing problems and (4) it can support in-depth analysis of the interrela-
tionships among system benefits, violation probability level and
constraints-violation risk level. A representative case will then be pro-
vided for demonstrating the applicability of the developed model.
Therefore, the results (i.e. water resources planning solutions, pollution
control plans and system benefits) under the combinations of different
joint and individual probability levels will be obtained to facilitate fur-
ther analysis and comparison.
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2. Methodology

2.1. Double-sided stochastic chance-constrained programming

For a general linear programming problem, it is generally incapable
of dealingwith problems of both the left-hand and right-hand sides pa-
rameters within the constraints are present as mutually independent
random parameters that follow normal distributions (μ is expected
value and σ is standard variation), and the associated constraints are
satisfied at a given probability (1 − pi) (i.e. pi is the probability that
the constraints can be violated). Thus, a double-sided stochastic
chance-constrained programming (DSCCP) model is proposed to ad-
dress these concerns.

max f ¼
Xn
j¼1

c jx j ð1aÞ

subject to:

Pr
Xn
j¼1

aij ωð Þxj ≤bi ξð Þ
8<
:

9=
;≥1−pi; i ¼ 1;2;⋯;m

aij ωð Þ � N μa;ij;σ
2
a;ij

� �

bi ξð Þ � N μb;i;σ
2
b;i

� �

xj≥0; j ¼ 1;2;⋯;m ð1eÞ
where f is the objective function; aij(ω) and bi(ξ) are the left-hand and
right-hand sides parameters of the constraints, which all obey indepen-
dent normal distributions; pi (pi∈ [0,1]) is a predefined probability level
for constraint i (i.e. violation probability), indicating the constraint is
satisfied at the probability level of (1 − pi) (Zhu and Huang, 2011); xj
is a decision variable; cj is a parameter of the model; m is the number
of constraints.

2.2. Inexact joint-probabilistic double-sided stochastic chance-constrained
programming

When the probability distributions of parameters are unknown be-
cause of data quality, interval parameter programming can be used to
address interval values when the upper and lower bounds are known.
Moreover, it has difficulties in analyzing interactions among multiple
constraints under joint probabilities. Since the requirement of satisfac-
tion degree level is usually imposed on a set of the constraints as a
whole, joint-probabilistic programming is incorporated into the optimi-
zation framework (Sun et al., 2013). Therefore, an inexact joint-
probabilistic double-sided stochastic chance-constrained programming
(IJDSCCP)model is developed to enhance its applicability. It is presented
as follows:

max f� ¼
Xn
j¼1

c�j x
�
j ð2aÞ

subject to:

Pr
Xn
j¼1

aij ωð Þx�j ≤bi ξð Þ
8<
:

9=
;≥1−pi; i ¼ 1;2;⋯;m

Xm
i¼1

pi ≤p
aij ωð Þ � N μa;ij;σ
2
a;ij

� �

bi ξð Þ � N μb;i;σ
2
b;i

� �

x�j ≥0; j ¼ 1;2;⋯;m ð2fÞ
where f± is the objective function; superscript ‘+’ denotes the upper
bound value; superscript ‘−’ denotes the lower bound value; aij(ω)
and bi(ξ) are the random parameters of left-hand and right-hand sides
constraints; xj± is an interval decision variable; cj± is an interval parame-
ter of the model; p is the joint probability level that is the sum of each
significance level, indicating the overall violation probability of the sys-
tem constraints.

2.3. Linearization form of IJDSCCP

According to Liu (2009), constraint Eq. (2b) can be converted into a
nonlinear form and the set of feasible constraints is convex. Theoreti-
cally, the IJDSCCP model is still presented as a nonlinear form, which
generally cannot be solved through traditional mathematical algo-
rithms. In this study, a non-equivalent but sufficient approximated lin-
earization is proposed to facilitate solving joint probabilistic double-
sided chance constraints (Sun et al., 2013). The detailed derivation pro-
cess is presented in Appendix I. Therefore, a linearization form of the
IJDSCCP is formulated as follows:

max f� ¼
Xn
j¼1

c�j x
�
j ð3aÞ

subject to:

Xn
j¼1

μa;ijx
�
j þΦ−1 1−pið Þ

Xn
j¼1

σa;ijx�j þ σb;i

0
@

1
A≤μb;i; i ¼ 1;2;⋯;m

Xm
i¼1

pi ≤p

aij ωð Þ � N μa;ij;σ
2
a;ij

� �

bi ξð Þ � N μb;i;σ
2
b;i

� �

x�j ≥0; j ¼ 1;2;⋯;m ð3fÞ

Then, this linearization form of the IJDSCCP can be transformed into
two deterministic submodels through the interactive algorithm
method, including the upper and lower bounds of the objective function
values. The solution process of the interactive algorithm method for
solving the linearization form of IJDSCCP is shown in Appendix II. The
framework of the IJDSCCP model is graphically illustrated in Fig. 1.
Therefore, optimal solutions and desired objective function values
under the combinations of different joint and individual probabilities
(i.e. risk levels of constraint violating) can finally be obtained.

3. Application

3.1. Problem statement

Economic development is accompanied by increasingly serious
water quality problems. Since zero-discharge of pollutants are



Fig. 1. The general framework of this study.
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economically infeasible and technically unachievable under current
technical conditions, managers should develop effective water re-
sources planning solutions and pollutant control plans to concurrently
Fig. 2. Schematic diagram
balance environmental standards and economic benefits. In the process
of decision-making on water quality management, managers need to
consider various system factors, including temporal or spatial changes
of the study system.
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in input parameters, dynamic characteristics of system conditions, envi-
ronmental factors, and policies and other uncertainties. Therefore, a
representative case of water quality management is provided for dem-
onstrating the applicability of the developed IJDSCCP model. Fig. 2
shows the schematic diagram of the study system. The main point
sources typically include three industrial factories and four municipal
towns, and non-point sources refer to the four agricultural zones due
to applying fertilizers. These point sources and non-point sources are
distributed on the same river section. In this study, the planning horizon
is 15 years, including three 5 year periods (i.e., 1825days). The objective
is tomaximize the economic benefits subject to the environmental con-
straints under uncertainty over the planning horizons.

Policies related to human activities (industrial, municipal, and agri-
cultural activities) and pollutant discharge are critical to ensuring max-
imum system benefits and water quality. Biochemical oxygen demand
(BOD) and total nitrogen (TN) are selected as water quality indicators
and the sustainability can thus be achieved by setting allowable TN
and BOD discharge (i.e. water environmental standards). In fact, the de-
termination of the amount of allowable discharge is complicated, and it
can be assumed that it is a random variable following a normal distribu-
tion (i.e. right-hand sides of constraints) (Li et al., 2012). Moreover,
other uncertainties and complexities in the study system also include:
(1) cost of wastewater treatment and fertilizer will fluctuate with mar-
ket prices butwithin a certain range, which can be roughly expressed as
interval values; (2) BOD treatment efficiency of the industrial factory,
wastewater treatment plants are related to the operating conditions of
the treatment equipment and they can be assumed to follow a normal
distribution (i.e. left-hand sides of constraints); (3) the impact of the
above-mentioned double-sided randomness chance constraints on the
study system; (4) interrelationships among different joint and individ-
ual probabilities over multiple planning periods, and (5) input parame-
ters or variables (e.g. unit benefits, water cost, irrigation quota,
treatment cost, wastewater treatment capacity, chemical fertilizer ap-
plied) vary with different planning periods. Therefore, to address the
above planning problem of water resources management and pollution
control, the developed IJDSCCP model is applied.

3.2. Application of the IJDSCCP model

Accordingly, the proposed model can be formulated as follows:

3.2.1. Objective function

max f� ¼ f�1− f�2

f�1 ¼ Lk
X3
k¼1

X3
i¼1

BI�ikPLI
�
ik þ

X4
m¼1

BM�
mkQM�

mk

 !
þ 5

X3
k¼1

X4
j¼1

BA�
jkPA

�
jk
Table 1
Input parameters of industrial factory for different planning periods.

Factory k = 1 k = 2 k = 3

Unit benefits of industrial factory BIik
± (Yuan/ton)

i = 1 [1200, 1500] [1250, 1600] [1350, 1700]
i = 2 [750, 900] [800, 1000] [850, 1100]
i = 3 [700, 800] [750, 850] [800, 900]

Rate of wastewater generation WIik
± (m3/ton)

i = 1 [0.60, 0.70] [0.55, 0.65] [0.50, 0.60]
i = 2 [0.55, 0.60] [0.50, 0.55] [0.45, 0.50]
i = 3 [0.30, 0.40] [0.25, 0.35] [0.20, 0.30]

Wastewater treatment cost CIik± (Yuan/m3)
i = 1 [65, 75] [55, 65] [45, 55]
i = 2 [55, 65] [45, 55] [35, 45]
i = 3 [50, 60] [40, 50] [30, 40]
f�2 ¼ Lk
X3
k¼1

X3
i¼1

PLI�ik WI�ikCI
�
ik þ FI�ikCW

�
k

� �þX4
m¼1

QM�
mk WM�

mkCM
�
mk þ CW�

k

� � !

þ 5
X3
k¼1

X4
j¼1

CF�jk FA
�
jk þ PA�

jkIQ
�
jkCW

�
k

� �

ð4cÞ

f± is the objective function representing net system benefits (106

Yuan); f1
± is the economic benefits resulting from different water

users when water is delivered (106 Yuan); f2± is costs of water use,
wastewater treatment and agricultural production (106 Yuan); Lk is
length of period k, Lk=365*5 = 1825 day; k is planning period (k = 1,
2, 3); i is the number of industrial factories (i=1, 2, 3); j is the number
of agricultural zones (j=1, 2, 3, 4);m is the number ofmunicipal towns
(m = 1, 2, 3, 4); BIik± is unit benefits of industrial production from fac-
tory i during period k (Yuan/ton); BAjk

± is unit benefits of agricultural
production from zone j during period k (103 Yuan/ha); BMmk

± is unit
benefits of municipal water supply from town m during period k
(Yuan/m3); PLIik±, PAjk

± and QMmk
± are decision variables; PLIik± is the

amount of production level of factory i during period k (ton/day); PAjk±

is planting area of zone j during period k (ha); QMmk
± is the amount of

water supply to town m during period k (m3/day);
WIik

± is rate of wastewater generation of factory i during period k
(m3/ton); CIik± is wastewater treatment cost of factory i during period
k (Yuan/m3); FIik± is water consumption of per unit industrial produc-
tion of factory i during period k (m3/ton); CWk

± is water cost per unit
of water supply during period k (Yuan/m3); FAjk± is the amount of fertil-
izer applied to agricultural zone j during period k (kg); CFjk± is cost of
purchasing fertilizer in agricultural zone j during period k (Yuan/ton);
IQjk

± is irrigation quota for agricultural zone j during period k (m3/ha);
WMmk

± is rate of wastewater discharge of municipal townm during pe-
riod k (%); CMmk

± is cost of wastewater treatment of municipal townm
during period k (Yuan/m3).

3.2.2. Constraints
(1) Wastewater treatment capacity constraints:

PLI�ikWI�ik≤ IPC
�
ik;∀i; k

QM�
mkWM�

mk≤MPC�
mk;∀m; k ð4eÞ

In point sources, factories andmunicipal towns are themain sources
of BOD discharge. Wastewater from each factory and town needs to be
treated before being discharged into the river, and the final BOD dis-
charge should be less than or equal to the discharge standards. The
above constraints ensure that the wastewater treatment capacity of
each point source is greater than the amount of wastewater generated
by humandaily life and industrial production. IPCik± iswastewater treat-
ment capacity of factory i during period k (m3/day);MPCmk

± iswastewa-
ter treatment capacity of municipal town m during period k (m3/day).
k = 1 k = 2 k = 3

Water consumption of per unit industrial production FIik
± (m3/ton)

[2.0, 3.0] [3.0, 4.0] [4.0, 5.0]
[2.5, 3.0] [3.0, 4.0] [3.5, 4.0]
[1.5, 2.5] [2.0, 3.0] [2.5, 3.5]

BOD concentration of discharged wastewater ICik± (kg/m3)
[1.25, 1.40] [1.15, 1.30] [1.05, 1.20]
[1.10, 1.20] [1.00, 1.10] [0.90, 1.00]
[0.95, 1.05] [0.85, 0.95] [0.75, 0.85]

BOD treatment efficiency λBOD, ik (%)
(0.90, 0.012) (0.93, 0.012) (0.96, 0.012)
(0.90, 0.012) (0.92, 0.012) (0.95, 0.012)
(0.88, 0.012) (0.92, 0.012) (0.94, 0.012)



Table 2
Input parameters of agricultural production for different planning periods.

Zone k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Unit benefits BAjk
± (103 Yuan/ha) Nitrogen content of soil SNj

(%)
j = 1 [20, 22] [24, 28] [28, 34] [0.10, 0.12]
j = 2 [15, 16] [16, 18] [17, 20] [0.15, 0.18]
j = 3 [17, 19] [19, 23] [20, 25] [0.10, 0.13]
j = 4 [16, 17] [18, 19] [19, 21] [0.09, 0.12]

The amount of fertilizer applied FAjk
± (kg) Average soil loss SLjk± (ton/ha)

j = 1 [270, 300] [225, 240] [150, 180] [20, 22] [16, 18] [12, 14]
j = 2 [270, 300] [225, 240] [150, 180] [16, 20] [14, 16] [12, 15]
j = 3 [270, 300] [225, 240] [150, 180] [25, 30] [20, 25] [15, 20]
j = 4 [270, 300] [225, 240] [150, 180] [18, 22] [16, 18] [12, 14]

Cost of purchasing fertilizer CFjk±

(Yuan/ton)
Average runoff RAjk

± (mm)

j = 1 [30, 35] [25, 30] [20, 25] [800, 950]
j = 2 [28, 33] [24, 29] [19, 24] [800, 900]
j = 3 [36, 40] [32, 36] [30, 34] [750, 900]
j = 4 [32, 35] [29, 32] [26, 29] [850, 950]

Irrigation quota IQjk
± (m3/ha) Dissolved nitrogen

concentration in the runoff
DNjk

± (mg/L)
j = 1 [4000, 4500] [3500, 4000] [3000, 3500] [2.5, 3.0] [2.0, 2.5] [1.5, 2.0]
j = 2 [3000, 3500] [2800, 3300] [2500, 3000] [2.3, 2.5] [2.0, 2.2] [1.8, 2.0]
j = 3 [3300, 3500] [3000, 3200] [2800, 3000] [2.6, 3.0] [2.2, 2.8] [2.0, 2.5]
j = 4 [3800, 4200] [3600, 4000] [3400, 3800] [3.5, 3.8] [2.6, 3.0] [2.2, 2.8]

Maximum allowable nitrogen loss MNLjk
±

(ton/ha)
Tillable area TAjk

± (ha)

j = 1 [0.12, 0.14] [0.10, 0.12] [0.08, 0.10] [2800, 3000]
j = 2 [0.15, 0.16] [0.12, 0.14] [0.10, 0.12] [4000, 4500]
j = 3 [0.11, 0.13] [0.09, 0.11] [0.06, 0.08] [4500, 5000]
j = 4 [0.10, 0.12] [0.08, 0.10] [0.06, 0.08] [3800, 4000]
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(2) BOD discharge constraints:

Pr PLI�ikWI�ikIC
�
ik 1−λBOD;ik
� �

≤ABIik
� �

≥1−pk;∀i; k

Pr QM�
mkWM�

mkMC�
mk 1−λBOD;mk
� �

≤ABMmk
� �

≥1−pk;∀m; k ð4gÞ

The allowable discharge of pollutants is an essential factor in the
control of water pollution, which can reflect the river's ability to receive
water pollutants without destroying the basic functions of the water
within a certain period of time. Due to the observation error of daily
wastewater discharge, the allowable BOD discharge of industrial facto-
ries and municipal towns are allowed to be expressed as random num-
bers. Meanwhile, wastewater treatment efficiency is also assumed to be
an independently random probability distribution.
Table 3
Input parameters of municipal water supply for different planning periods.

Town k = 1 k = 2 k = 3

Unit benefits BMmk
± (Yuan/m3)

m = 1 [40, 42] [44, 48] [48, 54]
m = 2 [30, 32] [32, 35] [34, 38]
m = 3 [35, 38] [39, 43] [40, 45]
m = 4 [32, 34] [35, 39] [38, 42]

Wastewater treatment cost CMmk
± (Yuan/m3)

m = 1 [25, 30] [20, 25] [15, 20]
m = 2 [15, 20] [10, 15] [5, 10]
m = 3 [22, 27] [17, 22] [12, 17]
m = 4 [20, 25] [15, 20] [10, 15]

BOD treatment efficiency λBOD, mk (%)
m = 1 (0.90, 0.012) (0.92, 0.012) (0.95, 0.012)
m = 2 (0.90, 0.012) (0.92, 0.012) (0.95, 0.012)
m = 3 (0.90, 0.012) (0.92, 0.012) (0.95, 0.012)
m = 4 (0.90, 0.012) (0.92, 0.012) (0.95, 0.012)
ICik
± and MCmk

± are BOD concentration of discharged wastewater
that are generated from factory i and municipal town m during period
k (kg/m3); λBOD, ik and λBOD, mk are BOD treatment efficiency of factory
i andmunicipal townm during period k (%); ABIik and ABMmk are allow-
able BOD discharge for factory i and municipal town m during period k
(kg/day).

(3) Joint-probabilistic constraints:

X3
k¼1

pk≤p ð4hÞ

pk is an individual probability for each period k of constraints, and p
is a joint probability that is the sum of all the planning periods.

(4) Total nitrogen (TN) discharge constraints:

SN�
j SL

�
jk þ RA�

jkDN
�
jk

� �
PA�

jk≤MNL�jkTA
�
jk;∀ j; k ð4iÞ

In practice, agricultural activities, as non-point sources, have more
significant impact on river water pollution. These constraints consider
TN losses from soil loss of farmland, including soil loss (loss of solid ni-
trogen) and surface runoff (loss of dissolved nitrogen). SNj is nitrogen
content of soil in the agricultural zone j (%); SLjk± is average soil loss
from agricultural zone j during period k (ton/ha); RAjk± is average runoff
from agricultural zone j during period k (mm); DNjk

± is dissolved nitro-
gen concentration in the runoff from agricultural zone j during period k
(mg/L); MNLjk

± is the maximum allowable nitrogen loss in agricultural
zone j during period k (ton/ha); TAjk

± is tillable area of agricultural
zone j during period k (ha).

(5) Production level constraints:

PLIi; min≤PLI
�
ik≤PLIi; max;∀i; k

PAj; min≤PA
�
jk; min ≤PAj; max;∀ j; k

QMm; min≤QM�
mk; min≤QMm; max;∀m; k ð4mÞ

These constraints ensure that each decision variable is limited to a
reasonable range. PLIi, min and PLIi, max are the minimum and maximum
industrial production level of factory i (ton/day); PAj, min and PAj, max are
the minimum and maximum planting area of agricultural zone j (ha);
QMm, min and QMm, max are the minimum and maximum municipal
water supply to town m (m3/day).
k = 1 k = 2 k = 3

Rate of wastewater discharge WMmk
± (%)

[0.43, 0.48] [0.40, 0.43] [0.36, 0.40]
[0.68, 0.78] [0.60, 0.65] [0.52, 0.58]
[0.38, 0.42] [0.35, 0.38] [0.30, 0.35]
[0.72, 0.75] [0.70, 0.73] [0.68, 0.70]

BOD concentration of discharged wastewater MCmk
± (kg/m3)

[0.60, 0.65] [0.55, 0.60] [0.50, 0.55]
[0.70, 0.75] [0.66, 0.72] [0.60, 0.70]
[0.61, 0.64] [0.59, 0.62] [0.57, 0.60]
[0.95, 0.98] [0.92, 0.95] [0.90, 0.93]



Table 5
The maximum and minimum production level of industrial factory, agricultural zone and
municipal town.

Location Minimum Maximum

Industrial factory (ton/day)
i = 1 800 1200
i = 2 500 900
i = 3 800 1500

Agricultural zone (ha)
j = 1 1000 1400
j = 2 1500 2000
j = 3 1850 2500
j = 4 1000 1800

Municipal town (m3/day)
m = 1 500 1200
m = 2 600 1800
m = 3 900 1500
m = 4 500 1600
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(6) Planting area constraint:

PA�
jk≤TA

�
jk;∀ j; k ð4nÞ

This constraint shows that the planting area is not greater than total
tillable area (ha).

(7) Nonnegative constraints:

PLI�ik; FA
�
jk; PA

�
jk;QM�

mk≥0;∀i; j;m; k ð4oÞ

These constraints ensure that each production activity is positive to
obtain feasible solutions.

Therefore, themodel can be solved though the solution algorithm as
described in the “Methodology” section.

3.2.3. Data preparation
Because this study is presented as a hypothetical water quality man-

agement system, the input data was primaryly determined bymeans of
governmental reports and literature review, so as to progressively sup-
port water resources planning and pollution control for the purpose of
sustainable development. Moreover, for data estimation, they are pre-
sented as intervals with upper and lower bounds, and normal distribu-
tions with mean values and standard deviations. Tables 1, 2 and 3
provide input parameters of industrial factory, agricultural production
and municipal water supply at different planning periods. Table 4 pre-
sents wastewater treatment capacity and allowable BOD discharge for
different planning periods. Table 5 lists the maximum and minimum
production level of industrial factory, agricultural zone and municipal
town. Note that all the input data are divided into three periods corre-
sponding to three planning periods. Not all the data have the same
changing trends due to the following reasons: (1) some parameters
will become larger because of the economic development and techno-
logical progress while some parameters will become smaller with con-
sideration of more stringent environmental standards and higher
treatment efficiency; (2) some parameters have the same values, poten-
tially indicating their lower uncertainty.

4. Results analysis

To examine and compare the risk of violating the constraints and ob-
tain a range of decision solutions, nine scenarios with the combination
of different joint and individual probability levels are provided. Table 6
shows the scenarios at representative joint and individual probability
levels. In the developed IJDSCCP model, an increased joint probability
level naturally represents a raised risk of violation and decreased strict-
ness for satisfactory level of system constraints, and vice versa (Zeng
et al., 2015). First, these scenarios are designed at the following three
Table 4
Wastewater treatment capacity and allowable BOD discharge for different planning
periods.

Factory k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Wastewater treatment capacity
IPCik

± (m3/day)
Allowable BOD discharge ABIik
(kg/day)

i = 1 [450, 500] [550, 600] [650, 700] (100, 52) (110, 52) (115, 52)
i = 2 [400, 450] [450, 500] [500, 550] (55, 52) (57, 52) (62, 52)
i = 3 [270, 320] [300, 350] [330, 380] (50, 52) (55, 52) (60, 52)

Town k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Wastewater treatment capacity
MPCmk

± (m3/day)
Allowable BOD discharge
ABMmk (kg/day)

m = 1 [350, 400] [400, 450] [450, 500] (26, 32) (28, 32) (30, 32)
m = 2 [450, 500] [700, 750] [850, 900] (50, 32) (52, 32) (55, 32)
m = 3 [300, 350] [350, 400] [400, 450] (35, 32) (38, 32) (40, 32)
m = 4 [550, 600] [750, 800] [950, 1000] (60, 32) (62, 32) (65, 32)
increased joint probability levels, that is: p = 0.01, 0.05 and 0.10. Sec-
ond, for each joint probability level, three sets of individual probability
levels are given: (1) the same levels are defined as scenarios A, i.e. 1A
(p = 0.01, p1 = 0.0033, p2 = 0.0033 and p3 = 0.0033), 2A and 3A,
which basically suggests that violation levels for the chance constraints
are the same during the three planning periods; (2) the increased levels
are defined as scenarios B, i.e. 1B (p=0.01, p1 = 0.002, p2 = 0.003 and
p3 = 0.005), 2B and 3B and (3) the decreased levels are similarly
defined as scenarios C, i.e. 1C (p = 0.01, p1 = 0.005, p2 = 0.003 and
p3 = 0.002), 2C and 3C.

4.1. Optimal solutions of industrial production, agricultural planting area
and municipal water supply

The IJDSCCP method can effectively address both interval and prob-
abilities uncertainties, and thus the solutions will include combinations
of distributional information, interval and deterministic. The interval so-
lutions can provide a range of decision space for managers, which will
help them identify desired alternatives as well as facilitate further anal-
yses of tradeoffs between system benefits and system-failure risks. The
distributional information can demonstrate the variations of violation
risk levels under different joint and individual probability levels.
Fig. 3a–c shows the solutions of scenarios 1A, 1B and 1C. Among them,
Fig. 3a presents the obtained results of industrial production levels in
three scenarios, including interval and deterministic values. Overall for
each scenario, the resultswould increase during three planning periods.
Taking scenario 1A as an example, the amount of industrial production
in factory 1 (i = 1) would be [642.9, 833.3] ton/day (k = 1), [846.2,
1090.9] ton/day (k = 2) and [1083.3, 1200.0] ton/day (k = 3) during
the three planning periods. Similarly, those in factory 2 (i = 2) would
be [452.0, 538.0] ton/day, [669.2. 809.7] ton/day and 900 ton/day in pe-
riods 1–3. Those in factory 3 (i = 3) would be [588.8, 867.7] ton/day,
[857.1, 1400.0] ton/day and [1100.0, 1500.0] ton/day in periods 1–3, re-
spectively. Additionally, it is noted that there is a deterministic value
Table 6
Scenarios at representative joint and individual probability levels.

Scenarios p p1 p2 p3

1A 0.01 0.0033 0.0033 0.0033
1B 0.01 0.002 0.003 0.005
1C 0.01 0.005 0.003 0.002
2A 0.05 0.0166 0.0166 0.0166
2B 0.05 0.005 0.015 0.03
2C 0.05 0.03 0.015 0.005
3A 0.10 0.033 0.033 0.033
3B 0.10 0.02 0.03 0.05
3C 0.10 0.05 0.03 0.02
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because both the lower and upper bounds approach the maximum in-
dustrial production level. Fig. 3c presents similar results for the munic-
ipal water supply plans in three scenarios. Generally, for the solutions of
industrial production and municipal water supply, the overall increas-
ing trends are mainly due to the assumed increase of waste treatment
capacity and the amount of allowable BOD discharge (i.e. right-hand
side constraints) but the decrease of wastewater generation rate and
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Fig. 3. Panels a, b, and c. Optimal solutions in the scenari
BOD concentration of discharged wastewater (i.e. left-hand side con-
straints). This has important practical implications for sustainable
water resourcesmanagement as these parameters are highly associated
with continuous improvements of environmental standards andwaste-
water treatment technology over planning periods. However, the re-
sults of agricultural planting area show a different variation trend (see
Fig. 3a). Overall for each scenario, the results, especially for the lower
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bounds, would decrease over the three planning periods. For example,
in scenario 1A, agricultural planting area for zone 3 (j = 3) are
[1601.9, 2500.0] ha, [1423.6, 2500.0] ha and [1075.7, 2424.2] ha in pe-
riods 1–3. This is mainly driven by the assumed decrease of the maxi-
mum allowable nitrogen loss in agricultural zone j during period k (i.e.
MNLjk

±) while the tillable area is kept the same during the three
Fig. 4. Panels a, b, and c. Solutions of industrial production
planning periods (i.e. TAjk±). These decreasing trends are likely to link
to the national policy of returning farmland to forest.

By contrast, in scenarios 1A, 1B and 1C at the same joint probability,
almost all the results during three planning periods are the same, espe-
cially in the third periods because of system constraints, that is, the
maximum production level and municipal water supply amount are
in three periods at different joint probability levels.



Table 7
Seven scenarios at the same joint probability level p= 0.01.

Scenarios p p1 p2 p3

1A 0.01 0.0033 0.0033 0.0033
1B 0.01 0.002 0.003 0.005
1C 0.01 0.005 0.003 0.002
1D 0.01 0.003 0.005 0.002
1E 0.01 0.003 0.002 0.005
1F 0.01 0.002 0.005 0.003
1G 0.01 0.005 0.002 0.003
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fixed. For example, in scenario 1A for factory 2, the solutions are [452.0,
538.0] ton/day, [669.2. 809.7] ton/day and 900 don/day in periods 1–3.
The results in scenario 1B are [437.8, 521.0] ton/day, [665.0, 804.7]
ton/day and 900.0 ton/day and in scenario 1C are [464.8, 553.2] ton/
day, [665.0, 804.7] ton/day and 900 ton/day in three planning periods.
Meanwhile, the amount of municipal water supply for town 2 are
[609.1, 691.0] m3/day, [873.8, 1032.7] m3/day and [1465.5, 1730.8]
m3/day in scenario 1A, [594.7, 674.6] m3/day, [869.6, 1027.7] m3/day
and [1465.5, 1730.8] m3/day in scenario 1B as well as [622.1, 705.7]
m3/day, [869.6, 1027.7] m3/day and [1449.1, 1730.8]m3/day in scenario
1C, respectively. The results in scenario 1C are not less than that of sce-
nario 1B, which indicates that the different sets of individual probability
have different effects on solutions. Moreover, for other cases, the results
may present uncertain trends in three scenarios. For instance, the solu-
tions of factory 1 among three scenarios and planning periods are kept
the same, that is, [642.9, 833.3] ton/day, [846.2, 1090.9] ton/day and
[1083.3, 1200.0] ton/day. This indicates that the effects of individual
probability levels on the results may be uncertain even at the same
joint probability level. Additionally, the solutions of agricultural plant-
ing area in scenarios 1A, 1B and 1C are kept the same since there is no
consideration of the random uncertainty and chance constraints in the
agricultural water quality management system.

Fig. 4a–c presents the solutions of industrial production in three pe-
riods at different joint probability levels (e.g. scenarios 1A, 2A, and 3A)
resulting from the IJDSCCP model. As a whole, optimal solutions at
each scenario (i.e. from 1A to 3C) for each factorywould increase during
periods 1–3. The reason for this has already been mentioned above. In
comparison, based on the solutions of scenarios 1A–3A, 1B–3B and
1C–3C at the same individual probability settings but increased joint
probability levels, it is clear that both the lower and upper bounds
would be higher at a higher joint probability level. Taking factory 2 as
an example, the solutions in scenario 1B are [437.8, 521.0] ton/day,
[665.0, 804.7] ton/day and 900.0 ton/day in periods 1–3.While those re-
sults in scenarios 2B and 3B are [464.8, 553.2] ton/day, [750.1, 900.0]
ton/day and 900 ton/day and [515.3, 613.2] ton/day, [796.3, 900.0]
ton/day and 900 ton/day, respectively. Obviously, a higher joint proba-
bility level corresponds to these increasing trends of industrial produc-
tions. Similarly, optimal solutions ofmunicipalwater supply among four
towns show the same trends. In other words, the above results indicate
that joint probability level would have more impacts on the solutions
than individual probability levels. In general, an increased joint proba-
bility level means an increased admissible risk of violating the system
constraints and a decreased satisfaction degree level of the constraints,
which will naturally result in a decreased strictness for the constraints
and a more relaxed decision domain (i.e. smaller left-hand side con-
straints while bigger right-hand side constraints) and a lower system
reliability level (Zhu and Huang, 2011; Sun et al., 2013).
Fig. 5. System benefits at different probability levels from scenarios 1A to 3C.
4.2. System benefits

Optimal solutions for different representative scenarios correspond-
ing to the combinations of joint probability and individual probability
levels are different, thereby leading to different system benefits. The ob-
jective function is to maximize the system benefits over the planning
periods. Fig. 5 presents system benefits at different probability levels
from scenarios 1A to 3C. As optimal solutions have obviously increasing
trends alongwith increasing joint probability levels, both the upper and
lower bounds of system benefits would accordingly increase aswell. For
example, system benefits resulting from the IJDSCCP model would be
[13,841.68, 21,801.81] × 106 Yuan in scenario 1A, while those in scenar-
ios 2A and 3A would be [14,150.26, 22,260.06] × 106 Yuan and
[14,280.55, 22,415.52] × 106 Yuan, respectively. Generally, higher joint
probability level lead to higher system benefits, indicating joint proba-
bility level has a significant effect on the system benefits. When the
joint probability level is raised, it is expected that the decision domain
is expanded to easily achieve more system benefits but an increased
constraint-violation risk should be noted. Therefore, the results can sup-
port in-depth analysis of the interrelationships among system benefits,
violation probability level and constraints-violation risk level.

There is an important distinction among these three scenarios, that
is, the same, increased and decreased individual probability levels.
This means that violation levels for the chance constraints are the
same (scenario 2A), increasing (scenario 2B) and decreasing (scenario
2C) over the first, second and third planning periods accordingly. For
the objective functions at the same joint probability level with three
sets of individual probability levels (e.g. scenarios 2A, 2B and 2C), it
can be clearly seen that the biggest system benefits are achieved in
scenario 2C (i.e. [14,238.82, 22,373.01] × 106 Yuan), followed by 2A
(i.e. [14,150.26, 22,260.06] × 106 Yuan) and 2B (i.e. [14,014.28,
22,055.04] × 106 Yuan). The results indicate that violation level of
the first period plays a major role in overall system benefits because
the individual probability level of scenario 2C is p1 = 0.03, p2 = 0.015
and p3 = 0.005 (p = 0.05). Moreover, the difference values among
these scenarios are [88.56, 112.95] × 106 Yuan between scenarios 2C
Fig. 6. System benefits resulting from scenarios 1A to 1G.



Table 8
Solutions of the ILP.

k = 1 k = 2 k = 3

Factory Industrial production levels (ton/day)
i = 1 [637.8, 833.3] [846.2, 1090.9] [1083.3, 1200.0]
i = 2 [399.3, 475.2] [588.3, 711.8] 900.0
i = 3 [517.6, 762.8] [857.1, 1400.0] [1100.0, 1500.0]

Zone Agricultural planting area (ha)
j = 1 [1079.0, 1400.0] [1080.7, 1400.0] [1083.2, 1400.0]
j = 2 2000.0 2000.0 [1932.4, 2000.0]
j = 3 [1601.9, 2500.0] [1423.6, 2500.0] [1075.7, 2424.2]
j = 4 [980.9, 1530.1] [991.5, 1699.2] [806.2, 1617.8]

Town Municipal water supply (m3/day)
m = 1 [384.6, 465.2] [615.6, 722.0] [1091.0, 1200.0]
m = 2 [555.6, 630.3] [791.9, 935.9] [1330.1, 1730.8]
m = 3 [697.6, 808.9] [921.1, 1142.9] [1142.9, 1500.0]
m = 4 [510.2, 548.3] [661.6, 712.5] [1013.9, 1078.5]
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and 2A, and [135.98, 205.02] × 106 Yuan between scenarios 2A and 2B.
By contrast, these difference values are [130.29, 155.46] × 106 Yuan be-
tween scenarios 3A and 2A, and [308.58, 458.25] × 106 Yuan between
scenarios 2A and 1A. Such a difference shows that joint probability
levels havemore impacts on the system benefits than individual proba-
bility levels.

There is an interesting phenomenon that system benefit in scenario
2C ([14,238.82, 22,373.01] × 106 Yuan) is slightly greater than that in
scenario 3B ([14,185.13, 22,312.22] × 106 Yuan). Strictly speaking, a
higher joint probability levelwould naturally lead to higher systemben-
efits. Closer examination of the scenario setting reveals that the first in-
dividual probability level of scenario 2C (p1 = 0.03) is greater than 3B
(p1 = 0.02). This can be further explained by the system constraints of
the first planning period are so stringent that even minor changes in
the violation probability will result in the disturbance of the results.
However for the third period, its system constraints may have less im-
pacts on the final solutions and system benefits due tomore relaxed de-
cision domain.

In summary, the above analysis shows that the IJDSCCP model can
effectively reflect the uncertainty in water resources planning and pol-
lution control of thewater environment system, and thus obtain a series
of optimal solutions containing potential options for industrial produc-
tion, agricultural planting and municipal water supply. From the meth-
odological perspective, the model can readily address random and
interval uncertainties, which means that comparisons can be made
under different violation-constraint risk levels when uncertain parame-
ters can be described as double-sided randomness and discrete inter-
vals. In addition, it can effectively reflect the interrelationships among
Table 9
Solutions of the deterministic model.

k = 1 k = 2 k = 3

Factory Industrial production levels (ton/day)
i = 1 800.0 958.3 1200.0
i = 2 739.1 900.0 900.0
i = 3 842.9 1083.3 1420.0

Zone Agricultural planting area (ha)
j = 1 1400.0 1400.0 1400.0
j = 2 2000.0 2000.0 2000.0
j = 3 2159.1 2036.4 1850.0
j = 4 1227.5 1300.7 1143.9

Town Municipal water supply (m3/day)
m = 1 824.2 1024.1 1200.0
m = 2 678.6 1160.0 1590.9
m = 3 900.0 1027.4 1307.7
m = 4 782.3 1083.9 1413.0
multiple constraints during the planning periods. More importantly,
from the practical perspective, managers can determine the final solu-
tions in the formof the interval according to the actual situations. An ac-
ceptable violation-constraints risk level should be discussed and
decided by stakeholders based on the specific system conditions (e.g.
system benefits, system failure risks and watershed pollution status).
Therefore, the obtained solutions can better assist in managing the
water quality problems and further support sustainable development
of water resources.

5. Discussion

5.1. Scenario analysis of the same joint probability level

To investigate the effect of the different individual probability levels
at the same joint probability level on the constraints and solutions,
Table 7 lists the seven scenarios at the same joint probability level p =
0.01. Based on the results of permutations and combinations, there are
six sets of individual probability levels at the same joint probability
level due to three planning periods. Moreover, there is one more sce-
nario where individual probability levels are equally kept all the same
as one third of the joint probability level. Therefore, Fig. 6 shows the sys-
tem benefits resulting from scenarios 1A to 1G. As shown in the figure,
the variations of the individual probability levelmay lead to different re-
sults, indicating the sensitivity of uncertain information. The results
show that scenario 1C with a decreased individual probability level
would lead to the maximum system benefits (i.e. [13,871.76,
21,852.52] × 106 Yuan) while an increased one results in the minimum
system benefits (i.e. [13,793.21, 21,722.95] × 106 Yuan). Additionally,
system benefits in scenario 1A are in the middle of the seven scenarios.
Therefore, three sets of individual probability level (e.g. A, B and C) are
verified as the representative scenarios. The above results can provide
a decision domain of the system benefits for managers and then assist
them in identifying the solutions based on their risk preferences and
judgments.

5.2. Effectiveness and reliability of the model

In contrast, for the violation probability pk=0without relaxation of
the constraints, the IJDSCCPmodel can be transformed into a general in-
terval linear programming (ILP) model. Table 8 shows the solutions of
the ILP. Obviously, it can only provide a single solution under an ex-
treme scenario of system conditions. Moreover, the system benefits of
the ILP are [13,530.00, 21,339.64] × 106 Yuan, which is slightly lower
than that of the IJDSCCPmodel. This is mainly because the conservative
attitudes towards the system conditions without constraints-violation
risks would narrow down decision space (e.g. decreased treatment ca-
pacity and/or increased waste generation rates). Therefore, there is an
advantage that the IJDSCCP model can generate more flexible solutions
corresponding to different predefined scenarios. Comparedwith the ILP
model, the distinction between them is that the IJDSCCP model can re-
flect more information about the tradeoffs among system benefits,
violation-constraints risk levels and system reliability levels. The
above analysis demonstrates that the IJDSCCP model can provide
more reliable solutions under different violation probability levels, cor-
responding to their specific risk levels.

The model can also be solved through a deterministic model by let-
ting random uncertain parameters be equal to their mean values with-
out standard deviations and averaging the lower and upper bounds of
interval values. That means that all the input parameters associated
with the objective function and the constraints are replaced by deter-
ministic values in the model, which can be readily solved by conven-
tional linear programming methods (Zhang et al., 2009). Therefore,
Table 9 shows the solutions through solving the deterministic model.
Accordingly, the results are fixed values rather than interval values,
which can be regarded as a special case in the solutions of the IJDSCCP
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model. Moreover, the objective function value is 18,744 × 106 Yuan and
thus the decision alternative will be restricted to a single solution. Obvi-
ously, replacing interval and random uncertainties with their corre-
sponding deterministic values will undoubtedly lose some uncertain
but valuable information, thereby reducing the effectiveness and flexi-
bility of the obtained solutions (Dai et al., 2014). Thus, compared with
the deterministic model, the effectiveness of the IJDSCCP model is ex-
pected to be increased.

5.3. Controllability and efficiency of the model

In this study, the basic principle to address the double-sided ran-
domness of the constraints is the approximation of nonlinear expres-
sions (Sun et al., 2013). Namely, the IJDSCCP model is solved through
substituting the nonlinear form of the constraints with the correspond-
ing non-equivalent but liner ones. The solution process is also mathe-
matically proved based on the Theorems 1 and 2. Therefore, the
controllability of such a general interval-based nonlinear programming
model can be highly strengthened due to its approximated linearization
form. It can be readily solved by conventional interval mathematical
programming with two deterministic submodels. Moreover, the main
purpose of approximation is to simplify computational process and im-
prove computational efficiency and the obtained results are almost
same (Zhang et al., 2018). However, it should be noted that the original
decision space may be narrowed down because this is a sufficient but
not necessary linearization form of the IJDSCCP model, resulting in sys-
tematic errors. In spite of that, it is quite an innovative and effective
method to solve the IJDSCCP model.

6. Conclusions

In this study, an inexact joint-probabilistic double-sided stochastic
chance-constrained programming (IJDSCCP) model is developed for
sustainable water resources planning and pollution control in water
quality management problems. This approach is a hybrid of interval pa-
rameter programming, joint-probabilistic programming and double-
sided stochastic chance-constrained programming. To reduce computa-
tional burden, a non-equivalent but sufficient linearization form of the
IJDSCCP is provided and proved in a straightforward manner. It can
deal with uncertainties including interval and double-sided random-
ness. Moreover, it is capable of reflecting chance-constraints with
double-sided randomness and interrelationships with dynamic feature
among multiple constraints during three planning periods.

The developed model is then tested by a representative case for
water quality management. Based on the results, the dynamic interac-
tions among pollutant loading and water environments are reflected
during three planning periods. The results including water resources
planning solutions, pollution control plans and system benefits under
the combinations of different joint and individual probability levels
can readily facilitate further analysis and comparisons. It is noted that
the assumed amount of wastewater discharge is decreased and waste-
water treatment efficiency and capacity are increased for the purpose
of sustainable development. Although this study is presented for
water quality and water environmental system management, the
novelmodel can also be extended intomany other environmental prob-
lems under uncertainties. However, the applicability ofmodel should be
enhanced by integrating fuzzy set theory where fuzzy information ex-
ists. Because water quality management usually involves various phys-
ical processes, additional parameter and optimization of the water
quality simulation model should be incorporated into the system opti-
mization model to further demonstrate its utility.
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Appendix I. The derivation process of linearization form of IJDSCCP

Theorem1. Eq. (2b) is equivalent to Eq. (5a). That is, assume that the sto-
chastic vectors aij and bi pertain to be independently normally distributed
random variables, then Eq. (2b) can be hold if and only if

Xn
j¼1

μa;ijx j þΦ−1 1−pið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

σ2
a;ijx

2
j þ σ2

b;i

vuut ≤μb;i; i ¼ 1;2;⋯;m ð5aÞ

whereΦ is the standardized normal distribution function.

Proof. Since aij and bi are independently random variables following
normal distributions, the variable: yi ¼

Pn
j¼1 aijx j−bi; i ¼ 1;2;⋯;m is

also a normally distributed random variable with the following ex-
pected value and variance:

μy;i ¼
Xn
j¼1

μa;ijx j−μb;i

σ2
y;i ¼

Xn
j¼1

σ2
a;ijx

2
j þ σ2

b;i ð5cÞ

Then, the quantity:
Pn

j¼1
aijx j−bi−ð

Pn

j¼1
μa;ijx j−μb;iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1
σ2

a;ijx
2
jþσ2

b;i

q must follow a stan-

dardized normal distribution.
Then, the inequality

Pn
j¼1 aijx j ≤bi; i ¼ 1;2;⋯;m is equivalent to:

Pn
j¼1 aijx j−bi−

Pn
j¼1 μa;ijx j−μb;i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 σ2
a;ijx

2
j þ σ2

b;i

q ≤−

Pn
j¼1 μa;ijx j−μb;i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 σ2
a;ijx

2
j þ σ2

b;i

q ð5dÞ

Thus, the chance constraint Eq. (2b) can be converted into:

Pr z≤−

Pn
j¼1 μa;ijx j−μb;i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 σ2
a;ijx

2
j þ σ2

b;i

q
8><
>:

9>=
>;≥1−pi; i ¼ 1;2;⋯;m ð5eÞ

where z is defined as the random variable that follows a standardized
normal distribution. Therefore, the chance constraint Eq. (5e) can be
hold if and only if

Φ−1 1−pið Þ≤−
Pn

j¼1 μa;ijx j−μb;i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 σ2
a;ijx

2
j þ σ2

b;i

q ; i ¼ 1;2;⋯;m ð5fÞ

That is, the deterministic equivalent of chance constraint is Eq. (5a).
Theorem 1 is thus proved.

Since Eq. (5a) is nonlinear, it will inevitably increase computational
burden when solving problems. As an alternative solution method,
an approximated linearization form of Eq. (5a) is proposed (see
Theorem 2).
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Theorem 2. Eq. (6a) is a sufficient condition for Eq. (6a)when pi ≤ 0.5 and
xj ≥ 0. That is,

Xn
j¼1

μa;ijx j þΦ−1 1−pið Þ
Xn
j¼1

σa;ijx j þ σb;i

0
@

1
A≤μb;i; i ¼ 1;2;⋯;m ð6aÞ

Proof. Based on the following inequality,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

tð Þ2
vuut ≤

Xn
j¼1

tð Þ; t∈R; t≥0 ð6bÞ

when ðPn
j¼1 σa;ijx j þ σb;iÞ∈R and ðPn

j¼1 σa;ijx j þ σb;iÞ≥0, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

σ2
a;ijx

2
j þ σ2

b;i

vuut ≤
Xn
j¼1

σa;ijx j þ σb;i

0
@

1
A ð6cÞ

Moreover, when (1− pi) ≥ 0.5, we have

Φ−1 1−pið Þ≥0 ð6dÞ

Thus, from inequalities Eqs. (6c) and (6d), we have

Xn
j¼1

μa;ijx j þΦ−1 1−pið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

σ2
a;ijx

2
j þ σ2

b;i
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Xn
j¼1

μa;ijx j þΦ−1 1−pið Þ
Xn
j¼1

σa;ijx j þ σb;i

0
@

1
A; i ¼ 1;2;⋯;m

ð6eÞ

Based on the above analysis, if inequality Eq. (6a) holds (sufficient
condition), then from inequality Eq. (6e), we have Eq. (5a).

Therefore, Eq. (2b) can be transformed into a non-equivalent but
sufficient linearization form in Eq. (7a) according to Theorems 1 and 2.

Xn
j¼1

μa;ijx j þΦ−1 1−pið Þ
Xn
j¼1

σa;ijx j þ σb;i

0
@

1
A≤μb;i; i ¼ 1;2;⋯;m ð7aÞ

Appendix II. Solutions for solving the linearization form of IJDSCCP

An interactive algorithm method is used to obtain the upper and
lower bounds submodels of the linearization formof IJDSCCPmodel. Be-
cause the objective f+ corresponds to the upper bound objective func-
tion value, thus the following submodel can be reformulated:

max fþ ¼
Xj1
j¼1

cþj x
þ
j þ

Xn
j¼ j1þ1

cþj x
−
j ð8aÞ

subject to:
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0
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2
a;ij

� �
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2
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� �

xþj ≥0; j ¼ 1;2;⋯; j1

x−j ≥0; j ¼ j1 þ 1; j1 þ 2;⋯;n ð8gÞ

Therefore, optimal solutions of the upper bound submodel can be
obtained, including xj, opt

+ for j = 1 to j1, xj, opt− for j = j1 + 1 to n and
fopt

+. Accordingly, the following lower bound submodel corresponds to
f− can be reformulated:

max f− ¼
Xj1
j¼1

c−j x
−
j þ

Xn
j¼ j1þ1

c−j x
þ
j ð9aÞ

subject to:

Xj1
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−
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þ
j
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0
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Xm
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pi ≤p

aij ωð Þ � N μa;ij;σ
2
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2
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x−j ≤xþj;opt ; j ¼ 1;2;⋯; j1

xþj ≥x
−
j;opt; j ¼ j1 þ 1; j1 þ 2;⋯;n ð9gÞ

Optimal solutions of xj, opt− for j=1 to j1, xj, opt+ for j= j1+ 1 to n and
fopt

− can be obtained. By combining the solutions of the upper and lower
bounds of submodels, the final solutions of the IJDSCCP model are pre-
sented as a set of interval values: fopt± = [fopt−, fopt+] and xj, opt

± = [xj, opt−,
xj, opt

+].
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