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Abstract: Biodegradable film is a promising alternative to polyethylene film in arid regions, but
its use is usually inhibited by its high cost and elusive effects on soil and crop yield. A two-year
field experiment was carried out to explore the impact of biodegradable film on soil hydrothermal
dynamics, yield, water productivity and economic benefits under three irrigation strategies (full,
medium and low irrigation amount) compared with non-mulching and polyethylene film. The
comprehensive benefits (economic, technical and ecological) of different film mulching patterns
were evaluated using analytic hierarchy process and gray relational analysis methods. The results
indicated that increasing irrigation amount could accelerate the degradation of the biodegradable
film, with the highest film weight loss rate of 38.8% obtained under full irrigation. Film mulching
could mitigate the negative impact of water deficit on crop yield, with the yield of biodegradable
film and polyethylene film enhanced by 11.6% and 18.6% compared with non-mulching under
low irrigation. Although polyethylene film showed the highest economic benefits, non-mulching
showed the highest comprehensive benefits. Only when the price of biodegradable film material
dropped to less than 1.37 times that of polyethylene film did the economic benefit of biodegradable
film outcompete non-mulching and become a more acceptable and promising farming solution to
boosting environmental sustainability.

Keywords: biodegradable film; deficit irrigation; yield; economic benefits; sustainable agriculture;
AHP-GRA

1. Introduction

Plastic film mulching (PM) can significantly improve crop yield, water productivity
and profitability [1] due to its impact on soil temperature enhancement [2], soil evaporation
and weeds suppression [3,4]. A commonly used plastic film for mulching is polyethylene
(PE), which is low in cost and convenient for machine paving [5,6]. China consumes
about 2.45 million tons of PE [7], while Western Europe consumes about 0.57 million tons
annually [8]. Currently, PE is ranked as the fourth most necessary agricultural material in
China, behind chemical fertilizer, seed and pesticide [9].

Completely recycling residual PE film, in spite of the advantages, is challenging
because of the difficulty of mechanical recycling and the lack of a related compulsory
policy [10], while persistent PE residue in the soil could cause an irreversible and negative
impact on the field ecosystem [11]. For example, PE residue may negatively affect water
and nutrition absorption in the root system, seed emergence and crop yield [12], whereas
burning PE residue produces persistent organic pollutants known as furans and dioxins [13].
Therefore, PE mulch use in agriculture is facing increasing environmental and social
pressures. Overcoming the negative effects of film mulching is essential for building a
sustainable and environmentally friendly agroecosystem.

In recent years, non-polluting and environmentally friendly degradable agricultural films
have been developed as a promising alternative to PE film [14]. Degradable agricultural films
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are generally classified into two types, photodegradable films and biodegradable films [8].
Previous studies showed that photodegradation would stop degradation if it was covered
by the soil or crop canopy; thus, the degradation rate was difficult to control [15], which
restricted its extensive application. Biodegradable films are produced from a biodegradable
PE starch plastic substance that can be degraded by natural microorganisms such as bacteria,
fungi and algae [16]. Their final metabolites are CO2 and H2O, without any pollution to the
ecological environment [17,18]. Previous studies show that biodegradable films could increase
soil temperature, maintain soil moisture and restrain evaporation [19], achieving higher crop
yields and water productivity compared to bare soil [19,20].

Yet, biodegradable films may face uncertainty in the emergence of film cracks under
complex environmental conditions, which may bring negative impacts on crop growth.
Previous research indicated that crop yields under biodegradable film mulching (BM)
were generally lower than under PE film mulching because the former was less effective
at conserving soil water and heat [21,22]. Thus, BM’s effect on hydrothermal soil condi-
tions, especially after degradation, needs to be investigated. In arid and semi-arid areas,
mulching and deficit irrigation are widely used to alleviate the contradiction between the
water scarcity and yield improvement [2]. Deficit irrigation could promote plant growth
and development, stimulate root activity, maintain or increase plant yield, influence prod-
uct quality, improve nutrient use efficiency and enhance plant acclimatization [23–25].
Therefore, it is necessary to elucidate the coupling effects of biodegradable film and dif-
ferent irrigation strategies on the soil′s hydrothermal and degradation characteristics and
their effects on crop yield and economic efficiency.

Additionally, the high price of biodegradable film is one of the factors limiting its large-
scale promotion in China. Thus, the economic benefits of crops mulched by biodegradable
film have been questioned. Some studies have examined the economic profit of biodegrad-
able film mulching and PE film mulching based on material cost and crop yield [26–28].
However, among biodegradable film’s key characteristics is its advantage in reducing
environmental pollution. It is necessary, then, to evaluate the comprehensive benefits of
biodegradable film in terms of economic [28,29], technological and ecological benefits when
attempting to improve understanding about building sustainable and environmentally
friendly agroecosystem.

Evaluation methods such as analytic hierarchy process (AHP), gray relational analysis
(GRA), fuzzy comprehensive evaluation (FCE), synthetical scored method and statistical
assessment are widely used to identify weights for system comprehensive evaluation indi-
cators [30–32]. The AHP method was proposed by Saaty [33] and is widely used in analysis,
management and evaluation; it is a decision-making method that combines qualitative and
quantitative analysis and is used to calculate the weight of evaluation index system [34,35].
GRA is a method in grey system theory, a quantitative approach describing the degree
of correlation between objects and factors [36,37]. The AHP-GRE comprehensive evalua-
tion method is scientific and comprehensive in calculating the weights of agroecosystem
evaluation indicators [38,39].

The objectives of this paper were to (i) explore the coupling effects of different film
mulching patterns and irrigation strategies on the degradation characteristics, hydrother-
mal soil characteristics, maize yield, water productivity and economic benefits and (ii)
construct a comprehensive benefits evaluation system for different mulching patterns and
conduct an evaluation of their performance using the AHP-GRE method.

2. Materials and Methods
2.1. Experimental Site Description

The field experiment was established from May to September in 2020 and 2021 at the
National Field Scientific Observation and Research Station on Efficient Water Use of Oasis
Agriculture in Wuwei of Gansu Province of China (37◦52′ N, 102◦52′ E, altitude: 1581 m).
The region is characterized by a typical continental temperate climate with the mean annual
precipitation of 164 mm, average annual temperature of 8 ◦C and annual frost-free period of
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150 d. Moreover, the sunshine duration is more than 3000 h, the mean annual pan evaporation
is 2000 mm and the mean annual air cumulative temperature (>0 ◦C) is 3550 ◦C [4,40,41]. The
groundwater table is 40~50 m below the ground surface. The soil is classified as a silty loam,
with volumetric field capacity, permanent wilting point and dry bulk density of 0.32 m3 m−3,
0.10 m3 m−3 and 1.53 ± 0.05 g cm−3, respectively [42].

2.2. Experiment Design

In this experiment, Xianyu 335 (Gansu Dunhuang Seed Group Co., Ltd., Jiuquan,
China), a major spring maize cultivar in the region, was planted on the farmland. This
field experiment consists of three film mulching patterns (non-mulching (NM), transparent
PE PM (Shuangxing Plastic Products Factory, Jining, China) and BM (Jin Hui Zhao Long
High Technology Co., Ltd., Lvliang, China)) and three irrigation strategies (full irrigation
amounts (FI), medium irrigation amounts (70% FI, MI) and low irrigation amounts (40% FI,
LI), as listed in Table 1). The biodegradable film was made from polybutylene co-adipate
co-terephthalate (PBAT) and polycaprolactone blended with starch. The FI was obtained
by subtracting effective rainfall from crop water requirement (ET), which was calculated
as the product of reference crop evapotranspiration and crop coefficient. The daily crop
evapotranspiration was calculated with the Penman–Monteith equation [43], and the crop
coefficient was obtained from a previous study from the same test area [4]. As listed in
Table 1, irrigation intervals were about 10 days; hence, in the calculation of the full irrigation
amount per irrigation, the total ET was the sum of ET in the previous 10 days. Each of
the nine treatments had three replicates, and the 27 plots (each 8 m in length and 5.6 m in
width) were arranged in a randomized block design (Figure 1).

Table 1. Irrigation amounts (mm) under different treatments during 2020 and 2021.

Years Treatments Irrigation Date (Month/Day) and Irrigation Amounts (mm) Total Irrigation
Amounts

6/13 6/24 7/4 7/14 7/24 8/3 8/13 8/24 9/3

2020 NM/PM/BM-FI 21.6 27 39.3 40.3 40.7 55.1 51.2 46.8 22.9 344.9
NM/PM/BM-MI 15.1 18.9 27.5 28.2 28.5 38.6 35.9 32.7 16.1 241.5
NM/PM/BM-LI 8.7 10.8 15.7 16.1 16.3 22.0 20.5 18.7 9.2 138.0

6/11 6/21 7/1 7/10 7/20 7/29 8/8 8/17 8/29

2021 NM/PM/BM-FI 16.0 21.3 35.8 47.5 49.1 56.5 52.6 44.0 36.4 359.2
NM/PM/BM-MI 11.2 14.9 25.1 33.2 34.4 39.5 36.8 30.8 25.5 251.4
NM/PM/BM-LI 6.4 8.5 14.3 19.0 19.7 22.6 21.1 17.6 14.5 143.7

The maize row and plant spacings were 40 cm and 25 cm, respectively. The drip line was
placed between two rows of spring maize with a spacing of 80 cm. Drippers were located
every 30 cm along the drip line, and the discharge rate was 2.5 L h−1. All seeds were sown
on 4 May 2020 and 30 April 2021, and maize was harvested on 16 September 2020 (NM
treatment), 27 September 2020 (PM and BM treatments), 17 September 2021 (NM treatment)
and 27 September 2021 (PM and BM treatments), respectively. During the experimental period,
irrigation was conducted about every 10 days from 13 June 2020 (11 June 2021) to 3 September
2020 (27 August 2021). All plots received a basal dose of fertilizer before planting (375 kg·ha−1

(NH4)2HPO4) and received the same amount of fertilizer at the jointing stage (525 kg·ha−1

CH4N2O) [44–47]. The corresponding treatment and field management of each plot were
unchanged during the two experimental years.
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2.3. Sampling and Calculations
2.3.1. Biodegradability

Film degradation in the field was observed and recorded every 15 days after sowing
(DAS) using a qualitative scale [48]. The film degradation process could be divided into five
stages [49,50]. Stage I indicated that the film had begun to crack after the induction period;
Stage II indicated that 25% of the film appeared to show tiny cracks; Stage III indicated that
the cracks in the film were 2~2.5 cm wide, and the number of cracks increased; Stage IV
indicated that the film was broken into little fragments, with no large pieces of film, and the
cracks were uniform and reticular at this stage; Stage V indicated that almost no residual
film piece existed on the soil surface and the film was degraded into fragments smaller
than 4 × 4 cm2.

After harvest, three sampling quadrats (0.6 m wide, 0.6 m long) were randomly
selected in each plot, and the residual films on the soil surface were collected. All of the
residual films were taken back to the laboratory and washed thoroughly in an ultrasonic
cleaner (30 min). After air drying to a stable weight, the loss rate (QL, %) was calculated as:

QL =
Q0 −Q1

Q0
× 100% (1)

where Q1 is the weight of the residual biodegradable film after harvest (g), and Q0 is the
weight of the biodegradable film before the experiment (g).

2.3.2. Soil Water Storage and Soil Temperature

A TRIME tube was placed in the middle of every plot. The soil profile was divided
into five sampling intervals (including 0~20, 20~40, 40~60, 60~80 and 80~100 cm) for soil
water content measurement using Time-Domain-Reflectometry (TRIME-PICO/PICO-BT,
Imko GmbH, Ettlingen, Germany) every 3~7 d. It was calibrated with volumetric soil water
content that was obtained based on mass soil water content from the oven drying method
and the measured soil bulk density. The soil water storage of 1 m soil depth (SWS, mm)
was calculated as follows:

SWS =
5

∑
i=1

SWCi × H (2)
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where SWC is the volumetric soil water content (cm3 cm−3), i is soil layer number and H
refers to the thickness of the soil layer (mm).

A set of temperature sensors connected with soil temperature recorders (HZ-TJ1, both
sensors and recorders came from the Hezhong Bopu Technology Development Co., Ltd.,
Beijing, China) was placed in the middle of every treatment plot at soil depths of 5, 10 and
20 cm and monitored every 30 min. The mean daily soil temperature (Ts) was calculated
based on the data series sampled each day. The measurement spot of Ts remains unchanged
in two maize-growing seasons.

2.3.3. Growth Stages

The crop growing period can be divided into four distinct growth stages (i.e., initial
(from planting date to approximately 10% ground cover), development (from 10% ground
cover to effective full cover), mid-season (from effective full cover to the start of maturity)
and late season (from the start of maturity to harvest or full senescence)) [43]. The date on
which 70% of the plants in each plot showed the main characteristics of a particular growth
stage was used to demarcate their entry into that growth stage.

2.3.4. Grain Yield and Water Productivity

At maturity, the 10 consecutive maize ears were hand-harvested from the center of
each plot to measure the maize grain yield, which was expressed at a water content of
13% [26,51].

The water productivity (WP, kg m−3) was calculated as [52]:

WP = 10× Y
ET

(3)

where Y is the grain yield of maize (kg ha−1) and ET is the total evapotranspiration over
the growing season in each year (mm, i.e., 10 m3 ha−1). ET can be calculated using the soil
water balance equation as:

ET = P + I + SWS_s− SWS_h− R− D + W (4)

where P is rainfall (mm), I is the amount of irrigation (mm) and SWS_s and SWS_h are soil
water storage in the root zone (here 0~100 cm soil depth) at sowing and harvest, respectively.
R is surface runoff (mm), D is the deep percolation (mm) and W is the upward soil water
flux to the root zone (mm). This experimental site is flat with no large precipitation during
maize growing seasons, and the groundwater table depth is over 40~50 m. Therefore, R, D
and W were negligible. Equation (4) is simplified as follows:

ET = P + I + SWS_s− SWS_h (5)

2.3.5. Profitability Analysis

In this study, an economic analysis of maize production was performed after harvest.
The input included the values of labor and materials. The labor costs included rotary
tillage, sowing, harvesting and field management (weeding, fertilization, etc.). Material
costs included maize seed, pesticides, fertilizers and drip irrigation facility. In the PM
and BM treatments, the additional labor and material expenses are for the machine film
mulching and the material cost of plastic film and biodegradable film, respectively. The
output was evaluated based on the economic harvest of grain and straw yields. Total input
(TI, Yuan ha−1) was calculated as:

TI = MI + LI (6)

where MI and LI are material input and labor input, respectively (Yuan ha−1).
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Total output (TO, Yuan ha−1) was calculated as:

TO = Y× P1 + G× P2 (7)

where G is the yield of dry straw (kg ha−1), and P1 and P2 are the price of grain and dry
straw of maize, respectively (Yuan kg−1).

Net income (NI, Yuan ha−1) was calculated as:

NI = TO− TI (8)

2.4. Construction of a Comprehensive Benefits Evaluation System

The AHP qualitatively determined three factors of benefits (i.e., economic, techni-
cal and ecological benefits) and their weights, and the GRA quantitatively analyzed the
uncertain relationships among factors. A comprehensive evaluation system combining
the advantages of AHP and GRA is proposed in this study to analyze the comprehensive
benefits of different mulching patterns. The comprehensive benefits evaluation system is
shown in Figure 2.
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2.4.1. Analytic Hierarchy Process

The process of the AHP method is as follows:
(1) Build the hierarchical structure of the comprehensive evaluation system
The comprehensive evaluation system is divided into three levels from top to bottom.

The highest layer is the target layer. The second layer is the criterion layer for evaluating the
target layer. The third layer is the specific indicator of the evaluation elements. According
to the relationship between the various elements of different mulching patterns, the highest
target layer was set as the impact of the different mulching patterns on comprehensive
benefits. The criteria layer included the economic benefits, technical benefits and ecological
benefits of the different mulching patterns. The indicator layer included the specific
indicators that evaluate the economic benefits, technical benefits and ecological benefits,
respectively. The comprehensive evaluation system is shown in Figure 3.
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(2) Construction of a comparative judgment matrix
Judgment matrix is the important degree of each evaluation index in this level for an

evaluation element in the previous level. The pairwise comparison judgment matrix was
built by the following equation:

B =
(
bij
)
n× n =


b11 b12 . . .
b21 b22 . . .

...
...

...

b1n
b2n

...
bn1 bn2 . . . bnn

 (9)

bij > 0, bji =
1
bij

, bii = 1 (10)

where bij is the relative important degree of Bi and Bj in the criterion layer relative to the
target layer. Its value is determined by the “1–9 Scale Method” (Table 2). N is the number
of criterion layer indicators.

Table 2. The 1–9 scaling method and illustration.

Scale Value Relative Important Degree Illustration

1 Equally important Both evaluation elements contribute the same to the goal

3 Slightly important One evaluation element is slightly more important than
another evaluation element

5 Obviously important One evaluation element is obviously more
important than another evaluation element

7 Strongly important One evaluation element is strongly more
important than another evaluation element

9 Extremely important One evaluation element is extremely more
important than another evaluation element

2, 4, 6, 8 Median of two adjacent degrees Used when compromise is needed

(3) Calculation of normalized weight coefficient (Wi) of the criterion layer
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Wi of the criterion layer is calculated as follows:

Mi =
n

∏
j=1

bij (11)

Wi =
n
√

Mi

∑n
i=1

n
√

Mi
(12)

where Mi is the product of each row of the judgment matrix.

2.4.2. Grey Relational Analysis

The process of the GRA method is as follows:
(1) Determination of the reference sequence and comparison sequence
To eliminate the dimension impact of evaluation factor, the sequence should be stan-

dardized. The standardization process for comparison sequence is quantified values com-
pared with the average of the standard values. The standardized formulas for comparison
sequence and reference sequence are as follows:

x0(k) =
x(0)0 (k)

1
n ∑n

i=1 x(0)i (k)
(13)

xi(k) =
x(0)i (k)

1
n ∑n

i=1 x(0)i (k)
(14)

where i = 1, 2, . . . , n; k = 1, 2, . . . , m; x0(k) represents standard values of kth evaluation
factor in evaluation samples; xi(k) represents standard values of kth evaluation factor in
level i evaluation standard; and x(0)0 (k) (k = 1, 2, . . . , m) is the comparison sequence. The
subscript 0 represents samples to be evaluated, and k represents the evaluation factor.
x(0)i (k) (i = 1, 2, . . . , n; k = 1, 2, . . . , m) is the reference sequence.

(2) Calculation of grey correlation coefficient
The grey correlation coefficient (ξ) is as follows:

ξi(k) =
min

i
min

k

∣∣∣x(0)0 (k)− x(0)i (k)
∣∣∣+ ρmax

i
max

k

∣∣∣x(0)0 (k)− x(0)i (k)
∣∣∣∣∣∣x(0)0 (k)− x(0)i (k)

∣∣∣+ ρmax
i

max
k

∣∣∣x(0)0 (k)− x(0)i (k)
∣∣∣ (15)

where ρ is the resolution coefficient; generally, the value takes 0.5 [36].
(3) Calculation of grey weighted correlation.
For some sequence, when the various factors have the different importance, according

to the role of the various indices, different weights were given. The weighted correlation of
the sequence being evaluated is as follows:

Rk =
n

∑
k=1

wk × ξi(k) (16)

where Rk is the grey weighted correlation; wk is the weight determined by AHP.

2.5. Statistical Analysis

One-way analysis of variance (ANOVA) using SPSS 20.0 software (IBM, SPSS Statistics,
New York, NY, USA) was performed to test the differences among the treatments. Multiple
comparisons were made using Tukey’s test at the 5% level (i.e., indicating significance at p < 0.05).
The figures were drawn by OriginPro 2022 (OriginLab Software, Northampton, MA, USA).
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3. Results
3.1. Climatic Conditions

The daily air temperatures, rainfall distributions and full irrigation amount in 2020 and
2021 are shown in Figure 4. Throughout the maize season of 2020, the average temperature
was 19.5 ◦C, and the range in high and low temperatures was 13~36 and 1~20 ◦C, respectively.
Similarly, the average temperature was 19.9 ◦C, high and low temperatures ranged over
16~39 and 3~21 ◦C during 2021, respectively. Total precipitation over the whole growing
period amounted to 131.8 mm in 2020 and 154.6 mm in 2021. Compared with 2020, the rainfall
amount increased by 12.8 mm in 2021, and was mainly distributed in the later stages of maize
growth. The total irrigation amounts under full irrigation treatment were 344.9 for 2020 and
357.7 mm for 2021 during the maize growing season, respectively.
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Figure 4. Daily rainfall amount, full irrigation amount and air temperature in 2020 (a) and 2021 
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3.2. Film Degradation Process and the Film Weight Loss Rate

Table 3 shows the different degradation performances for BM and PM treatments.
Biodegradable film under FI, MI and LI treatments already showed signs of degradation at
45 DAS. At 90 DAS, the film showed 2~2.5 cm cracks under BMFI treatment, and 25% of the
film showed fine cracks under BMMI and BMLI treatments in the fields. At 135 DAS (pre-
harvest of maize), the films broke into small fragments under BMFI and BMMI treatments,
and no larger remains were on the soil surface, which indicated BMFI and BMMI entered
film degradation stage IV. On the whole, similar trends of the film degradation were found
in 2020, as those in 2021.
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Table 3. The degradation process of film under three irrigation strategies for the maize growing
seasons in 2020 and 2021.

Treatment
Days after Sowing (d)

30 45 60 75 90 105 120 135

2020~2021
PM FI Null Null Null Null Null Null I I

MI Null Null Null Null Null I I I
LII Null Null Null Null Null Null Null I

BM FI Null I II II III III III IV
MI Null I II II II II III IV
LI Null I II II II II III III

2021~2022
PM FI Null Null Null Null Null I I I

MI Null Null Null Null Null Null I I
LI Null Null Null Null Null Null I I

BM FI Null I II II III III III IV
MI Null I II II II III III IV
LI Null I I II II II III III

The sowing date was 1 May and 3 May in the 2020 and 2021 growing seasons, respectively (annual film mulching
three days earlier than sowing). Stage I indicates that after the induction period, the film had begun to crack; Stage
II indicates that 25% of the film appeared to show tiny cracks; Stage III indicates that the cracks in the film were
2~2.5 cm in width, and the number of cracks increased; Stage IV indicates that film breaks into small fragments,
no large pieces of film, and the cracks were uniform and reticular; Stage V indicates that almost no residual film
pieces existed on the soil surface and the film was degraded into fragments smaller than 4 × 4 cm2 (null indicates
the film is practically intact).

Figure 5 summarized the film weight loss rate under different irrigation strategies
(FI, MI and LI treatments) after maize harvest, which were 38.8%, 36.1% and 32.9% in
2020, respectively, and 41.3%, 37.1% and 35.1% in 2021, respectively. Compared with
LI treatment, the BM weight loss rate under FI treatment increased by 6.1% and was
significantly different (p < 0.05). The PM film weight loss rate was 12.0%, and no significant
difference among treatments was observed in 2020 and 2021. The weight loss rate may be
caused by accidental wear and tear due to mechanical pulling and human activity.
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Figure 5. The weight loss rates under BM of different irrigation strategies (FI, MI and LI treatments)
after maize harvest in 2020 (a) and 2021 (b). Different superscripted letters (a and b) indicate
significant differences between treatments in each year at p < 0.05.

3.3. Soil Water Storage

SWS to the soil depth of 1 m varied significantly in 2020 and 2021 (Table 4). At 34 DAS
(2020) and 29 DAS (2021), compared with pre-sowing SWS, the SWS in the NM, PM and BM
treatments were decreased by 42.4, 23.9 and 22.7 mm in 2020 and decreased by 39.1, 22.0 and
27.9 mm in 2021, respectively. The SWS of all treatments increased after sowing (with
irrigation to ensure seedling emergence) and then decreased over time during 0~62 DAS.
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SWS was higher in FI than MI and LI during 62 to 123 DAS in 2020 (62 to 121 DAS in 2021),
but there were significant differences only during 90 and 121 DAS in 2021 (p < 0.05). Based
on the NM, PM and BM treatments, the SWS at 136 DAS decreased by 2.4, 2.6 and 2.8 mm
compared with 123 DAS for 2020, respectively. In addition, the SWS at 141 DAS increased
by 17.9, 23.1 and 14.7 mm compared with 121 DAS for 2021, respectively, which may be
due to strong rainfall (53.4 mm) at 129 DAS in 2021.

Table 4. Soil water storage (SWS) evolution in the 0~100 cm soil layer in 2020 and 2021.

Treatment
2020 (2021) Days after Sowing (d)

0 (0) 34 (29) 62 (62) 92 (90) 123 (121) 136 (141)

2020–2021
NM FI 163.9 ± 7.5 a 206.6 ± 11.2 a 186.8 ± 12.3 a 182.1 ± 10.4 a 185.0 ± 17.1 a 191.5 ± 16.4 a

MI 125.1 ± 6.5 a 169.6 ± 23.1 a 157.6 ± 21.7 a 131.8 ± 36.6 a 136.4 ± 29.6 a 134.0 ± 23.2 a
LI 136.6 ± 15.9 a 176.7 ± 21.6 a 155.0 ± 12.2 a 144.4 ± 15.1 a 140.4 ± 17.0 a 139.2 ± 14.8 a

PM FI 150.2 ± 20.7 a 178.1 ± 16.7 a 155.9 ± 7.5 a 144.3 ± 12.5 a 170.0 ± 48.1 a 177.4 ± 53.3 a
MI 138.9 ± 8.5 a 148.8 ± 24.6 a 145.8 ± 4.9 a 131.6 ± 1.9 a 138.4 ± 8.4 a 133.4 ± 4.6 a
LI 147.6 ± 40.6 a 181.7 ± 36.2 a 152.9 ± 28.8 a 143.1 ± 14.8 a 152.3 ± 12.1 a 152.2 ± 17.8 a

BM FI 155.0 ± 20.3 a 179.2 ± 22.1 a 174.9 ± 14.0 a 166.4 ± 19.2 a 206.5 ± 32.9 a 200.2 ± 26.0 a
MI 132.3 ± 7.9 a 152.9 ± 32.5 a 142.5 ± 21.1 a 144.9 ± 36.8 a 146.0 ± 24.1 a 148.5 ± 18.7 a
LI 143.5 ± 19.2 a 166.8 ± 14.1 a 144.0 ± 16.9 a 140.2 ± 14.6 a 136.9 ± 7.6 a 132.4 ± 7.4 a

2021–2022
NM FI 175.1 ± 9.8 ab 216.2 ± 6.4 a 192.2 ± 1.2 a 167.7 ± 9.6 a 172.5 ± 12.5 a 183.0 ± 14.4 a

MI 137.9 ± 16.2 ab 163.3 ± 40.1 a 147.2 ± 19.5 a 128.9 ± 15.4 b 128.8 ± 12.7 b 146.9 ± 12.6 a
LI 145.0 ± 16.4 ab 195.7 ± 12.3 a 176.9 ± 22.9 a 139.5 ± 18.2 ab 135.5 ± 13.5 ab 160.6 ± 13.6 a

PM FI 175.7 ± 22.2 ab 178.3 ± 16.5 a 159.5 ± 17.9 a 130.5 ± 3.2 ab 136.9 ± 3.7 ab 156.0 ± 17.8 a
MI 143.6 ± 7.4 ab 168.5 ± 10.7 a 150.5 ± 3.6 a 124.3 ± 6.2 b 121.3 ± 7.6 b 142.7 ± 6.0 a
LI 158.8 ± 17.5 ab 197.3 ± 24.6 a 157.3 ± 18.5 a 151.1 ± 14.7 ab 139.3 ± 14.8 ab 162.2 ± 19.6 a

BM FI 180.2 ± 22.2 a 221.6 ± 25.9 a 188.2 ± 33.7 a 148.4 ± 13.3 ab 156.5 ± 21.9 ab 179.8 ± 35.5 a
MI 155.4 ± 9.1 ab 169.2 ± 17.3 a 133.1 ± 24.8 a 122.7 ± 18.8 b 118.0 ± 26.1 b 132.1 ± 28.0 a
LI 134.5 ± 9.6 b 163.0 ± 18.7 a 162.9 ± 25.7 a 135.1 ± 9.1 ab 127.6 ± 8.6 b 134.4 ± 9.8 a

Note. Different letters (a and b) indicate significant differences among SWS of different treatments at p < 0.05.

Figure 6 shows the relative ET (ETr, i.e., the ratio of ET at one specific period to the
total ET during the crop growth period). From sowing to the first irrigation (41 DAS in
2020 and 43 DAS in 2021), the ETr under BM treatment was higher than under PM and
NM treatments, with an average increase of 4.9% and 0.7% in 2020 and 2.1% and 0.6% in
2021, respectively. During 34 to 62 DAS in 2020 (62 to 121 DAS in 2021), the ETr in the
NM treatment was 2.1% (1.4%) higher than in PM and 2.4% (1.0%) higher than in the BM
treatment. During 124 to 136 DAS in 2020 (122 to 141 DAS in 2021), the ETr decreased
gradually in all treatments without significant difference.
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3.4. Soil Temperature

The variations in daily average Ts of 0~20 cm soil depth under different film mulching
treatments are shown in Figure 7. The daily evolution of Ts was similar between the BM and
PM treatments, and Ts were all significantly higher than in the NM treatment (p < 0.05). Ts_BM
(i.e., Ts in BM treatment) was 0.9 and 1.0 ◦C higher than Ts_NM (i.e., Ts in NM treatment) and
0.6 and 0.4 ◦C lower than Ts_PM (i.e., Ts in PM treatment) over the two growing seasons of
2020 and 2021, respectively.
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Figure 8 shows the accumulation of Ts_PM–Ts_NM and Ts_BM–Ts_NM under different
film degradation stages in 2020 and 2021. The accumulation of Ts_PM–Ts_NM and Ts_BM–
Ts_NM during 0 to 30 DAS were significantly higher than 31 to 60, 61 to 90, 91 to 120 and
121 to 150 DAS over two growing seasons, respectively. At various degradation stages (i.e.,
0 to 30, 31 to 60, 61 to 90, 91 to 120 and 121 to 150 DAS), the accumulation of Ts_PM–Ts_NM
was generally higher than Ts_BM–Ts_NM, with an increase of 63.7, 12.5, 11.0, 6.7 and 10.7 ◦C
in 2020 and 22.7, 18.1, 12.9, 3.5 and -1.7 ◦C in 2021, respectively. There were significant
differences only in the initial maize growth stage (0 to 30 DAS) between the accumulation
of Ts_PM–Ts_NM and Ts_BM–Ts_NM (p < 0.05).

Figure 9 compares the soil effectively accumulated temperature (SEAT) under the
NM, PM and BM treatments (Figure 9a,c) and the air effectively accumulated temperature
(AEAT) (Figure 9b) for 2020 and 2021. The AEATs of the two growing seasons were
1692.9 and 1790.7 ◦C, respectively. The PM treatment had the highest SEAT, followed by
BM and NM. The SEAT under BM treatment was not significantly different from the PM
and NM treatments, increasing by 150.3 ◦C (8.5%) compared with the NM treatment and
decreasing by 72.8 ◦C (4.1%) compared with the PM treatment. However, the SEAT under
the PM treatment was 223.3 and 223.1 ◦C higher than in the NM treatment in 2020 and
2021, respectively, which was significantly different (p < 0.05).
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Figure 9. Soil effective accumulated temperature (SEAT) under NM, PM and BM treatments for
2020 (a) and 2021 (c). Air effective accumulated temperature (AEAT) for 2020 and 2021 (b). Bars
stand for standard error. Any two bars in the same figure and year with different capital letters above
the bars are significantly different at p < 0.05. NM, PM and BM represent non-mulching, transparent
polyethylene plastic film mulching and biodegradable film mulching, respectively.

3.5. Maize Growth
3.5.1. Growth Stages

The DAS for maize reaching the different growth stages under different film mulching
treatments are shown in Figure 10. The BM and PM treatments significantly increased
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Ts in the early growth period and shortened the time to harvest. The initial stage in the
BM treatment was 3 and 6 days longer than in the PM treatment and 9 and 7 days shorter
than those of the NM treatment in 2020 and 2021, respectively. After maize entered the
development stages of growth, the growth stage progress under BM and PM treatments was
similar. Overall, the DAS of mature under BM and PM treatments was 136 and 141 days,
shortened by 11 and 10 days compared with NM treatment in 2020 and 2021, respectively.
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Figure 10. Growth stages of maize under different film mulching patterns.

3.5.2. Yield and WP

The yield components (i.e., spike length, ear diameter, 100-kernel weight), grain yield
and WP of maize were significantly (p < 0.05) affected by mulching patterns and irrigation
strategies (Table 5). In 2020 and 2021, the grain yield of maize in the BMFI treatment reached
18.1 and 14.9 t ha−1, which increased by 5.8% and 12.4% compared with those of the NMFI
treatment. When compared with the PMFI treatment, the grain yield of maize decreased by
1.7% in 2020 and increased by 0.6% in 2021. The WP of the BMFI treatment was the highest,
reaching 4.1 and 2.9 kg m−3 in 2020 and 2021, with an increase of 12.5% and 10.2% over the
NMFI treatment and 3.3% and 2.6% over the PMFI treatment, respectively. Though there
was no significant difference in grain yield and WP under different film mulching patterns
with the same amount of irrigation, the decrease in the irrigation amount significantly
reduced grain yield and increased WP (p < 0.05). Under the same film mulching pattern,
compared with FI treatment, grain yield in MI and LI treatments decreased by 10.4~12.2%
and 30.0~34.6% in 2020 and 20.7~25.4% and 23.2~29.6% in 2021, respectively; the WP in
the MI and LI treatments increased by 2.1~15.4% and 8.6~17.1% in 2020 and 2.7~6.1% and
22.0~33.8% in 2021, respectively.

3.6. Benefits Assessment
3.6.1. Economic Benefits

As shown in Figure 11, the economic parameters of maize under the nine treatments
were evaluated in 2020 and 2021. In general, the net income for the NM, PM and BM
treatments were CNY 10,041~22,060, CNY 11,853~22,060 and CNY 9172~18,412 ha−1 in
2020 and CNY 5578~14308, CNY 6880~14,834 and CNY 4808~13,352 ha−1 in 2021, re-
spectively. During the two growth seasons, the highest value was obtained in the PMFI
treatment, and the lowest value was recorded in the BMLI treatment, and the amount of
irrigation water showed a significant effect on the net income of each treatment (p < 0.05).
The total input cost of the BM treatment is the highest among all treatments, which was
CNY 2450 ha−1 and CNY 1080 ha−1 higher than the NM and PM treatments, respectively.
The BM treatment average total output increased by CNY 1690 ha−1 compared with the NM
treatment and decreased by CNY 562 ha−1 compared with the PM treatment, respectively.
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Table 5. Yield components, grain yield and WP of maize under all treatments in 2020 and 2021.

Treatment Spike Length
(cm)

Ear Diameter
(mm)

100-Kernel
Weight (g)

Grain Yield
(kg·ha−1)

WP
(kg·m−3)

2020–2021
NM FI 21.23 a 53.42 a 37.89 c 17.15 ab 3.68 b

MI 20.96 ab 48.99 bc 37.68 b 15.06 bc 4.24 ab
LI 19.67 bcd 48.68 bc 40.41 b 11.21 d 4.21 ab

PM FI 19.87 abcd 49.26 b 44.15 a 18.46 a 4.00 ab
MI 19.12 cd 48.09 bc 42.81 ab 16.32 ab 4.09 ab
LI 17.62 ef 45.81 d 41.63 ab 12.93 cd 4.69 a

BM FI 20.02 abc 49.75 b 43.14 ab 18.14 a 4.13 ab
MI 18.57 de 48.62 bc 42.47 ab 16.26 b 4.47 ab
LI 16.93 f 44.61 d 40.85 b 12.23 d 4.49 ab

2021–2022
NM FI 18.12 a 47.62 ab 43.95 c 13.26 ab 2.59 d

MI 16.62 ab 46.78 abc 43.35 c 10.51 cd 2.66 cd
LI 14.67 bc 45.25 bc 43.39 bc 9.33 d 3.16 bc

PM FI 18.40 abc 48.97 a 45.38 a 14.81 a 2.79 cd
MI 16.76 cd 44.05 c 45.59 ab 11.72 bc 2.96 cd
LI 15.39 de 46.58 abc 47.36 ab 11.37 bcd 3.73 a

BM FI 18.52 abc 48.89 a 47.62 ab 14.90 a 2.86 cd
MI 16.23 cd 45.59 bc 45.34 ab 11.11 bcd 2.71 cd
LI 15.24 e 45.56 bc 45.03 bc 10.63 dc 3.50 ab

Note: Different letters (a, b, c and d) indicate significant differences among yield components, grain yield and WP
of maize under different treatments at p < 0.05.
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3.6.2. Comprehensive Benefits under Different Film Mulching Patterns

According to the comprehensive evaluation system established in Section 2.4 for
different mulching patterns under the same irrigation strategy (i.e., FI treatment), indicators
including net income (C11), mulch degradation properties (C21), mulch residues (C31),
etc., are quantified. The total weight matrix is A = (0.571, 0.143, 0.286, 0.600, 0.200, 0.200,
0.625, 0.239, 0.136) (Table 6). After the consistency check, the CRs (test coefficient) of each
judgment matrix were 0.026, 0 and 0.018 (less than 0.10), respectively. Each judgment
matrix shows satisfactory consistency, indicating there was no logical confusion in the
priority of indicators. Only in terms of economic benefits did the PM treatment perform
the best, followed by the NM treatment (Figure 12). The NM treatment had the highest
benefit based on technical or ecological benefits alone, followed by the BM treatment. On
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the whole, the combined benefits of considering economic, technical and ecological benefits
under each film mulching pattern were ranked as NM > BM > PM in the arid region of
northwest China.

Table 6. Correlation coefficients and weights for each indicator.

Criterion Layer Weights Indicator Layer Weights
Correlation Coefficients

NM PM BM

Economic benefits 0.297 Net income 0.571 0.982 1.000 0.955
Technical benefits 0.163 Input to output ration 0.143 1.000 0.981 0.936
Ecological benefits 0.540 Land productivity 0.286 0.963 1.000 0.991

Mulch degradation properties 0.600 1.000 0.468 0.595
Mulch insulation properties 0.200 0.483 1.000 0.646
Moisture retention properties of mulch 0.200 0.669 0.555 1.000
Mulch residues 0.625 1.000 0.540 0.575
Water productivity 0.239 0.949 0.987 1.000
Soil desalination 0.136 0.423 0.333 1.000
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4. Discussion
4.1. Effect of Irrigation Strategies on Degradation of Biodegradable Film

The biodegradable film degradation rate mainly depends on the degradation materials
and environmental conditions [8,53]. Differences in the natural environment of different
regions such as soil moisture, sunlight, air temperature extremes and wind speed may
cause differences in the degradation time and degree [29,54,55]. In this study, the same type
of biodegradable film was used in the 2020 and 2021 experiments. Both years show that the
degradation rate of the biodegradable film was the fastest under the FI treatment and the
slowest under the LI treatment. Furthermore, the amount of irrigation also had a significant
effect (p < 0.05) on the biodegradable film′s weight loss rate after maize harvest, with the
highest film weight loss rate of 38.8% under the FI treatment. These results were similar to
previous research findings [56–60]. In a hybrid maize experiment, Zhang et al. [28] found
that the biodegradable film degradation rate in 2017, with lower soil moisture, was slightly
lower than in 2016 with relatively higher soil moisture. These studies further confirmed
that the large number of rapidly growing microorganisms induced by the wetter soil might
be responsible for the accelerated rate of film degradation; that is, relatively high soil
water content might accelerate the degradation of biodegradable film. However, premature
cracking failure of the biodegradable film may reduce the benefit of film mulching for
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enhancing soil temperature and conserving soil water [22]. Yin et al. [48] demonstrated
that the optimum degradation induction period (the time to enter biodegradation stage I)
for BM was about 50 d, which performed better than a 20 d induction period in arid and
semi-arid regions. In terms of this study, although BM degradation was accelerated under
FI, with its induction period reduced to 45 d, it was close to the optimum degradation
rate and would be acceptable. Therefore, in this study, BM under FI treatment not only
increased the temperature of the early crop growth stage, but it also showed more efficient
use of rainfall with more degradation cracks than those under LI treatment, as confirmed
by Chen et al. [61].

4.2. Effects of Mulching and Irrigation on the Soil Temperature and Soil Water Storage

Low temperature is one of the main factors restricting crop germination [62,63]. Gen-
erally, the effects of BM and PM treatments on increasing Ts have been widely docu-
mented [26,28,64]. In this study, the differences in the accumulation of Ts_PM–Ts_NM and
Ts_BM–Ts_NM under different film degradation stages during the crop growth period were
also quantified in 2020 and 2021 (Figure 8). These results indicated that the PM and BM
treatments significantly increased Ts only during the early stages of crop, and Ts_BM be-
haved in a similar way to Ts_NM after film degradation (p < 0.05) (Figures 7 and 8), which
was consistent with those results by Gu et al. [65]. Previous studies have shown that
SEAT was tightly linked with the process of crop growth and development [56,66]. A
similar result was found in the current study: The SEAT under BM treatment increased by
8.5% compared with NM treatment and decreased by 4.1% compared with PM treatment
(Figure 9). Therefore, a suitable Ts could accelerate plant growth, maintain root activity and
increase crop yield [48,67].

The variations in the SWS during the growing season depended on the rainfall, soil
evaporation and crop consumption for growth [68]. Many studies have demonstrated that
both PM and BM can greatly maintain the SWS by reducing soil evaporation, especially
during the early crop stages [4,69]. In this experiment, during film degradation stages
I~III (from 0 to 90 DAS), the ETs of the PM and BM treatments were higher than the NM
treatment under the same irrigation strategy. Generally, we assume that film mulching
restricted the soil evaporation and should show lower ET in the earlier crop stage. However,
film mulching advanced crop development by enhancing soil temperature and tended
to boost leaf area and canopy coverage of maize, thus increasing crop transpiration (T)
and resulting in a higher ET under mulched conditions during film degradation stages
I~III. This result agrees with observations previously reported by Gong et al. [70] and Zhao
et al. [4]. During film degradation stages III~IV (from 90 DAS to harvest), the ET of the NM
treatment was significantly higher than the PM and BM treatments under same irrigation
strategy (p < 0.05), and there was no significant difference between the ETs of the PM
and BM treatments. This result is expected because maize with film mulching accelerated
senescence at film degradation stages III~IV (i.e., the middle and later maize growth stages).
The maize canopy of NM tended to have higher LAI than PM and BM (Figure 13); thus,
the transpiration of NM in this period was higher. On the whole, in this study, there was a
decrease in ET under the PM and BM treatments during the two maize-growing seasons,
which was consistent with that reported in the literature [71–74].

4.3. Effects of Mulching and Irrigation on the Crop Growth and WP

Previous studies have that mulching treatments significantly increased yield since film
mulching reduced soil evaporation and improved soil hydrothermal conditions [2,75,76].
This study confirmed the previous reports. In addition, although the grain yield of maize
was usually lower for BM than PM treatment, there was no significant difference between
these treatments in this study (Table 5). This result was consistent with the previous studies
on various crops, including summer maize [19], wheat [20], tomato [77], zucchini [78],
strawberry [79], cotton [80] and peanut [27]. It is worth noting that the difference in grain
yield between FI and LI treatments reduced after mulching over two growth seasons
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(Table 5), which indicated that film mulching could be particularly beneficial to yield
formation in cold areas with water shortages. Most of the studies elaborated that exposure
to heat stress reduced pollen number and viability, reduced silk growth and ovary growth
and weakened silk. Thus, the kernel number was significantly reduced [81,82]. In this
study, the local air temperature might be higher than the appropriate growth temperature
at the filling stage of maize. During the same period (90 DAS), the number of cracks in
the degraded film increased and reached degradation level III; the BM treatment could
avoid the negative effects of high temperatures and make more efficient use of rainfall
compared with PM. Furthermore, DI generally increased the ratio of root to shoot, which
was beneficial for improving water absorption and enhancing soil nutrient uptake [25].
Therefore, the combination of biodegradable film and deficit irrigation could not only be
beneficial to grain yield formation but also to reducing irrigation and improving water
productivity. Meanwhile it is more friendly to the soil environment [2,55]. Water is the main
limiting factor for crop growth in dryland farming areas, and PM is widely used to improve
WP compared with NM [5]. In the present study, PM and BM increased WP by 7.51–18.0%
and 2.0–12.5% compared with NM, respectively, and these results were similar to those from
earlier studies [48,49]. The main reason was that film mulching can effectively restrict soil
water loss via soil evaporation and increase canopy transpiration, biomass accumulation
and, ultimately, grain yield [56]. Lin et al. further confirmed that PM may have little
impact on the sum of ET because it increased transpiration and reduced evaporation,
and it is beneficial to enhancing water productivity with PM [5]. Therefore, in the long
run, the combination of biodegradable film and deficit irrigation may act as a promising
agricultural management system to improve maize yield, WP and simultaneously reduce
soil environmental risks in arid and semi-arid regions in China.
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Figure 13. Evolution of maize leaf area index (LAI) under different mulching treatments for three
irrigation levels, FI (a), MI (b) and LI (c) in 2020 and FI (d), MI (e) and LI (f) in 2021, respectively.
NM, PM and BM represent non−mulching, transparent polyethylene plastic film mulching and
biodegradable film mulching, respectively.

4.4. Comprehensive Benefits Evaluation of Different Film Mulching Patterns Based on
AHP-GRE Methods

In this study, net income was lower for BM treatment compared with PM and NM
treatments over two growth seasons (Figure 11). This finding agrees with observations
previously reported by Sun et al. [27]. There are two possible reasons for this. First, the
price of biodegradable films is higher than transparent PE films. Second, the BM and PM
treatments had additional labor input costs for the film sheet installation [28]. Therefore,
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compared with NM and PM treatments, the material cost of BM treatment increased by
19.1% and 11.4%, respectively. In addition, the labor cost of film sheet installation increased
by 20.2% compared with the NM treatment. In addition, according to the local situation,
the total output included straw yield and grain yield in this study. Although the BM
treatment′s total output was much larger than the NM treatment′s, its material cost was
also the highest; thus, the BM treatment′s total net income decreased by 6.8% compared
with the NM treatment. It is noteworthy that the grain yield and net income of the BM
treatment were 0.6% and 14.0% lower than the PM treatment, respectively. Crop yields
might be affected by the degradation materials that dominate the degradation behavior of
biodegradable film. Li et al. [83] and Yin et al. [48] also demonstrated that biodegradable
film with a faster or slower degradation rate seemed to reduce crop yields compared with
those with a moderate degradation rate.

Importantly, from the environmentally friendly perspective, the substitution of polyethy-
lene plastic film with biodegradable film to guarantee maize production and food security
displayed great potential [84,85]. The study by Liu et al. [54] elaborated that the high price
of biodegradable film is one of the factors limiting its large-scale promotion in China and
emphasized the need to improve the production process of biodegradable film and reduce
production costs on the one hand and to evaluate the comprehensive benefits of biodegrad-
able film on the other. For this reason, we conducted a comprehensive benefits evaluation
system of different film mulching patterns based on the AHP-GRA methods (Figure 2). It
was found that the comprehensive benefits performance of BM treatment was better than the
PM treatment (Figure 12), which is consistent with the results of numerous studies [86,87].
The economic benefits performance of the BM treatment was inferior to the PM and NM
treatments, presenting a key obstacle to its large-scale promotion in China. Furthermore,
the effect of the material cost of biodegradable film on the economic benefits was further
investigated, as shown in Figure 14, which demonstrated that in this experiment, when the
ratio of the BM and PM material cost was 1~1.37, the economic benefits of the BM treatment
were higher than the NM treatment. However, the economic benefits of the BM treatment
were higher than the PM treatment only when the ratio of the BM and PM material cost was
0.18. Therefore, reasonable control of material cost and improvement in the regional suitability
of biodegradable film are essential for large-scale promotion.
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5. Conclusions

This study conducted a two-year experiment in a maize field in an arid region of
northwest China to explore the coupling effects of different film mulching patterns and
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irrigation strategies in the agroecosystem. Furthermore, based on the economic, technical
and ecological benefits, the comprehensive benefits under different film mulching patterns
were evaluated by the AHP-GRA methods. The main conclusions were as follows:

(1) The FI treatment could accelerate the degradation of biodegradable film, which
caused a significant increase in weight loss rate (6.1%) compared with the LI treatment.

(2) The difference in the accumulation of Ts_PM–Ts_NM and Ts_BM–Ts_NM was significant
during the initial stage (0 to 30 DAS) and non-significant during the middle and late stages.
The SEAT under the BM treatment was 150.3 ◦C (8.5%) higher than the NM treatment and
72.8 ◦C (4.1%) lower than the PM treatment.

(3) Film mulching could mitigate the negative impact of water deficit on crop yield,
with the yield in BM and PM being enhanced by 11.6% and 18.6% compared with those in
NM under the LI condition.

(4) Although PM showed the highest economic benefits, it had the lowest comprehen-
sive benefits, followed by BM and NM. Only when the cost of BM material dropped to less
than 1.37 times the cost of PM did the economic benefit of BM outcompete NM and result
in a more acceptable and promising farming solution to boost environmental sustainability.
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