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a  b  s  t  r  a  c  t

The  analysis  of  irrigation  water  productivity  (IWP)  can  provide  insights  into  taking  measures  to  improve
water-efficient  irrigation.  This  study  examines  the temporal  IWP  trend  of  cereal  crops  over  the  Hexi  Cor-
ridor  in  Northwest  China  by employing  descriptive  analysis,  trend  analysis,  and  change-point  analysis.
Spatial  patterns  of  different  typical  years  (dry,  average  and  wet  year)  are  analyzed  by the  spatial  inter-
polation  method  and  spatial  autocorrelation  method.  The  regional  average  IWP significantly  increased
from  0.51  kg/m3 to 1.29  kg/m3 during  the period  of  1981–2012  and  no  change  point  was  detected.  Spatial
distribution  of  IWP  reveals  that  IWP  was  higher  in the  plain  oasis  region,  while  lower  in the  mountainous
and  desert  oasis  region.  The  IWP  ranged  from  0.72  to  1.60  kg/m3 for the  dry year  2004,  0.77–1.66  kg/m3

for  the  average  year  2008,  and  0.81–1.93  kg/m3 for the wet  year  2011,  respectively.  No  significant  spatial
autocorrelation  was  observed.  By  2012,  there  were  still  3.9%  of  the  area  with  IWP  less than  1.0  kg/m3,
exi Corridor which  implied  an  opportunity  to increase  IWP  through  better  water  management  practices.  The  grey  rela-
tional  analysis  of  the influences  of  major  driving  factors  (area  supported  by unit  of  irrigation  water  use,
fertilization,  agricultural  film,  agricultural  pesticide,  and  annual  mean  temperature)  on IWP  showed  that
area supported  by unit  of irrigation  water  use,  fertilization,  and  agricultural  film  had  dominant  impacts
during  the whole  period.

©  2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

Water is a vital factor in agricultural production, and water
hortage is seriously affecting China’s agricultural production
Brown and Halweil, 1998; Oweis and Hachum, 2003; Kang et al.,
016). Under the pressure of water scarcity and the increasing
opulation growth, agriculture is being challenged by producing
ore agricultural products with limited water resources (Zwart

nd Bastiaanssen, 2004). For irrigated agriculture in Northwest
hina, a step towards meeting this challenge is to improve irrigation
ater productivity (Molden, 1997; Molden et al., 2003).

Irrigation water productivity (IWP) is defined as the produc-
ion per unit of irrigation water application (Molden, 1997; Playán
nd Mateos, 2006). It reflects the relationship between irrigation
nput and output, and represents not only water-use efficiency but
lso benefits of irrigation, which is a useful indicator for revealing

he level of agricultural irrigation and crop management (Seckler
t al., 2003; Abdullaev and Molden, 2004; Zoebl, 2006). Increased
WP  is the result of comprehensive improvements in agricultural

∗ Corresponding author.
E-mail address: tongling2001@cau.edu.cn (L. Tong).

ttp://dx.doi.org/10.1016/j.agwat.2016.07.010
378-3774/© 2016 Elsevier B.V. All rights reserved.
production and irrigation water-use efficiency (Ali and Talukder,
2008; Molden et al., 2010). Application of regional IWP  assessment
and analysis can provide insight for exploring macroscopically agri-
cultural water-saving management practices (Ines et al., 2003).
Increasing lower IWP  values can greatly contribute to food produc-
tion (Cai et al., 2009). Thus the analysis of IWP  is attracting more
attention. So far, two  major procedures for assessing regional scale
water productivity are widely applied. One is using statistical or
model-simulated yield and water use data to assess water produc-
tivity (Droogers and Kite, 2001; Abdullaev and Molden, 2004; Garg
et al., 2012), and the other is integrating RS/GIS technology with
models to obtain spatio-temporal expression of yield and water use,
and then assess water productivity (Ines et al., 2002; Bastiaanssen
et al., 2003; Wesseling and Feddes, 2006; Zwart and Bastiaanssen,
2007; Immerzeel et al., 2008; Li et al., 2008; Zwart et al., 2010; Cai
et al., 2012; Yan and Wu,  2014).

Many spatio-temporal studies on regional or basin-scale water
productivity have been reported in literature, but they mainly focus
on crop water productivity (CWP, ratio of yield to evapotranspira-

tion). Abdullaev and Molden (2004) provided the analysis of CWP
for different farm types and different basin segments in Syr Darya
Basin of central Asia for three hydrological years. The ratio of the
highest to lowest CWP  was about 2. CWP  in water-deficient years

dx.doi.org/10.1016/j.agwat.2016.07.010
http://www.sciencedirect.com/science/journal/03783774
http://www.elsevier.com/locate/agwat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agwat.2016.07.010&domain=pdf
mailto:tongling2001@cau.edu.cn
dx.doi.org/10.1016/j.agwat.2016.07.010
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as higher than that in water-abundant years. Mainuddin and
irby (2009) considered provincial administrative boundaries as

he spatial units and analyzed spatial and temporal trends of CWP
n Lower Mekong Basin comprising Laos, Thailand, Cambodia and
ietnam, and the results showed that CWP  increased over time.
here is a significant spatial variation among countries but not for
rovinces within a country. Lower CWP  is attributed to the lower
ainfall, longer drought period, poorer soil nutrition, and less fer-
ilizer application. Cai et al. (2012) analyzed spatial and temporal
ariability of CWP  in Limpopo River Basin of Southern Africa, and
oncluded that the basin CWP  was very low with great variation,
ainly due to the low yield, variable water availability, and vari-

nt water management levels. Yan and Wu (2014) analyzed CWP
f winter wheat based on remote sensing data, and found a steady
ncrease of CWP  in recent years.

The spatial and temporal studies on regional IWP  are relatively
ess reported. Droogers and Kite (2001) simulated IWP  at basin
cale for the Gediz River of Turkey with annual precipitation of
00–1000 mm in the basin, and found IWP  in the dry years was
uch higher than that in the wet years. Irrigation water produc-

ivity of spring wheat in an irrigation district of Heihe River Basin,
ansu Province, China, was analyzed from 1995 to 2006, where the
verage IWP  increased by 8.9% from the period of 1995–2000 to the
eriod of 2001–2006 (Hu et al., 2010).

To improve IWP, it is essential to understand correlations
etween IWP  and its driving factors. The factors influencing
ield and irrigation water use certainly influence IWP  (Zwart
nd Bastiaanssen, 2004; Ali and Talukder, 2008; Molden et al.,
010; Descheemaeker et al., 2011). The controllable and uncon-
rollable factors include: (1)climate factors, such as temperature,
apor pressure deficit, and precipitation (Zwart and Bastiaanssen,
004), (2) agronomic management practices, such as irrigation
anagement (Molden, 1997; Kang et al., 2000; Yazar et al., 2002;
ktem et al., 2003; Zwart and Bastiaanssen, 2004; Geerts and Raes,
009), soil management (Hatfield et al., 2001; Molden et al., 2010),
nd crop management (Molden, 1997; Zwart and Bastiaanssen,
004; Passioura, 2006) (3) crop species and varieties (Zwart and
astiaanssen, 2004; Ali and Talukder, 2008), and (4) soil factors
uch as soil texture and organic matter(Hatfield et al., 2001; Ali
nd Talukder, 2008). Driving factors of IWP  vary with regional dif-
erences and also depend on socioeconomic conditions. Thus, it is
ecessary to analyze the influences of driving factors for improving

WP.
The Hexi Corridor is located in the arid region of Northwest

hina, which is characterized as an irrigation district of “no irri-
ation, no agriculture”. It is an important grain production base in
orthwest China to fulfill crop demands in the region. In this region,
ater problems are being aggravated by the arid continental cli-
ate, water scarcity, competition among water-consuming sectors,

nd groundwater overexploitation (Bao and Fang, 2007; Su et al.,
007). Ensuring or increasing agricultural production with reduced
r currently available irrigation water, in other words, improv-
ng irrigation water productivity, is increasingly important for the
egion. In order to improve IWP, the spatio-temporal analysis of
WP  in Hexi Corridor and its major driving factors are necessary, and

ill provide insights for exploring measures to improve irrigation
ater-use efficiency and water saving management.

The previous studies on IWP  and its driving factors in Hexi Cor-
idor were limited to the field scale or a part of Hexi Corridor for

 short time period, and to a single driving factor. None of them
omprehensively analyzed IWP  in the whole Hexi Corridor while
onsidering long-term temporal trends, change points, spatial vari-

tions, and the influences of major driving factors on IWP. This
tudy aims to examine spatio-temporal trends and the major driv-
ng factors of irrigation water productivity of cereal crops in Hexi
orridor for the period of 1981–2012. Therefore, the objectives of
agement 179 (2017) 55–63

this study are to: (1) reveal the temporal trend of IWP  over the past
32 years; (2) choose a relatively optimal method for interpolating
IWP  in terms of interpolation accuracy, by comparing the inverse
distance weighed method, local polynomial interpolation method,
and ordinary kriging method; (3) analyze spatial pattern and spa-
tial autocorrelation of IWP  in different typical years (i.e. dry (75%
hydrologic frequency of annual precipitation), average (50%) and
wet (25%) year); (4) evaluate major driving factors of IWP, analyze
their influences on IWP  in different periods, and provide valuable
insights for improving IWP.

2. Materials and methods

2.1. Study area

Hexi Corridor lies in an arid region of Northwest China,
between longitudes 92◦12′E and 104◦20′E and latitudes 37◦17′N
and 42◦48′N, with a total area of 270,000 km2. It is a long corri-
dor and the distance from east to west is about 1000 km (Fig. 1). It
can be approximately divided into three parts: the Qilian Mountain
area, plain oasis, and mountainous region in the north, according
to geomorphic features and ecological factors. There are three river
systems, the Shiyang River, Hei River, and Shule River, from east to
west (Bao and Fang, 2007).

In the Hexi Corridor, land, light and heat resources are abundant,
but precipitation is limited and evaporation is high, with the annual
mean precipitation of 50–150 mm,  and the annual average evap-
oration of 1500–2500 mm.  The crop water requirement is much
greater than precipitation. Thus, agricultural production relies on
irrigation. The main cereal crops are maize (Zea mays L.) and wheat
especially spring wheat (Triticum aestivum L.), and high value crops
are mainly oil crops, such as sunflower (Helianthus annuus), rape-
seed (Brassica napus),  and sesame (Sesamum indicum).

2.2. Data collection

The data, including cereal crops yield, the amount of irriga-
tion, planting proportions of cereal crops, fertilization, agricultural
film, agricultural pesticide, and disaster area, were obtained from
field investigation and statistical data from the China Economic
and Social Development Statistics Database (http://tongji.cnki.
net/kns55/index.aspx), Gansu Water Statistical Yearbook, Gansu
Development Yearbook and Gansu Rural Yearbook, collected by
department of water management, agriculture. Data were avail-
able for the period of 1981–2012, and the county administrative
boundaries were considered as the spatial unit basis. The data of
fertilization, agricultural film and agricultural pesticide were col-
lected in terms of the total use amount of each county. Irrigation
water use for cereal crops were calculated by combing the synthet-
ical irrigation quotas and the planting proportions of cereal crops.
The disaster area means the area of yield reduction due to natural
disaster. Daily climate data, including precipitation and mean tem-
perature, were obtained from China Meteorological Data Sharing
Service System (http://data.cma.cn). Descriptions about the indi-
cators are listed in Table 1.

2.3. Methodology

2.3.1. Irrigation water productivity
Irrigation water productivity is defined as the yield per unit of

irrigation water use, which can be expressed as:
IWP  = Y/I (1)

where IWP  is irrigation water productivity, in kg/m3, Y is yield, in
kg/ha, I is irrigation water use, in m3/ha.

http://tongji.cnki.net/kns55/index.aspx
http://tongji.cnki.net/kns55/index.aspx
http://tongji.cnki.net/kns55/index.aspx
http://tongji.cnki.net/kns55/index.aspx
http://tongji.cnki.net/kns55/index.aspx
http://tongji.cnki.net/kns55/index.aspx
http://tongji.cnki.net/kns55/index.aspx
http://data.cma.cn
http://data.cma.cn
http://data.cma.cn
http://data.cma.cn
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Fig. 1. Location and digital elevation m

Table  1
List of the selected indicators.

Indicator Description

Yield Total production of cereal crops per
unit area (kg/ha)

Irrigation Water Use Total irrigation amount applied to
cereal crops per unit area (m3/ha)

Area supported by unit
of irrigation water
use (AI)

Reciprocal of Irrigation Water Use
(ha/m3)

Fertilization (F) Total amount of fertilizer usage per
county (convert to element amount)
(ton)

Agricultural Film (AF) Total amount of agricultural film usage
per county (ton)

Agricultural Pesticide
(AP)

Total amount of pesticide usage per
county (ton)

Annual Mean
Temperature (T)

Average value of annual mean
temperature (◦C)

Precipitation (P) Average value of annual precipitation
(mm)

ET0 Annual reference evapotranspiration
calculated by Penman-Monteith
equation recommended in FAO56
(Allen et al., 1998) (mm)

Disaster Area (DA) Area of yield reduction affected by

2

m
K
d
K
c
o
d

natural disaster (1000 ha)

.3.2. Descriptive statistical analysis
Descriptive statistical characteristics including mean, maxi-

um/minimum value, and standard deviation were calculated. The
olmogorov-Smirnov (K-S) test was adopted to test whether the
ata set followed normal distribution. The original hypothesis of
-S test is that the tested data are not normally distributed. When

alculated p value is greater than significance level � (0.05), the
riginal hypothesis should be rejected and the data are normally
istributed, and vice versa (Lilliefors, 1967). In this study, SPSS 21
odel (DEM) of the Hexi Corridor.

version software (IBM SPSS Inc., USA) was used to compute descrip-
tive statistical characteristics and test the distribution of IWP  data.

2.3.3. Trend analysis
Kendall’s rank test can quantitatively evaluate changing trends

of time series, and it has been widely applied to assess the signif-
icance of trends in hydrometeorology (Kottegoda, 1980; Belle and
Hughes, 1984). The calculating procedure is given by Kendall and
Syuart (1964) and Mann (1945). For a data series x1, x2,. . .,  xn, the
number of all pairs of observations that xi < xj (j > i), say p, should be
determined. The ordered (i, j) subsets are (i = 1, j = 2,3,. . .,n), (i = 2,
j = 3,4,. . .,n). . . (i = n-1, j = n), and n is the length of data series.

The test is based on the statistic �, where

� = 4p

n(n − 1)
−  1 (2)

For a random sequence

E(�) = 0 (3)

Var(�) = 2(2n + 5)
9n(n − 1)

(4)

The test statistic, U-statistic, is defined as

U = �

[Var(�)]0.5
(5)

U converges rapidly to a standard normal distribution, at a given sig-
nificance level (�). N˛/2 is used as a threshold that can be obtained
from Table of Standard Normal Distribution. If|U| > N˛/2, a pos-
itive U indicates a significant increasing trend and a negative U
indicates a significant decreasing trend. The linear trend analysis
is also performed and compared for the purpose of trend analysis.
2.3.4. Change-point test
The Pettitt change-point test is a nonparametric method to test

whether the mean of a variable significantly changes before or after
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 certain point of time (Pettitt, 1979). The test defines the basic
tatistic as

i,n = Ui−1,n +
∑n

j=1
sgn(xi − xj)i = 2, · · ·,  n (6)

The original hypothesis is that change-points do not exist, and
est statistics are defined as

 i = Max1≤i≤n|Ui,n| (7)

n = − (n3 + n2)Ln(˛/2)
6

(8)

here n is the length of the data series and � is a given significance
evel. If k(i) > Kn, the data series has a change-point at xi.

.3.5. Interpolation methods
To select a relatively optimal interpolation method to plot the

patial distribution of IWP, three interpolation methods, i.e. inverse
istance weighed method, local polynomial interpolation method
nd ordinary kriging method, were applied and compared by using
he Geostatistical Analyst Tools of ArcGIS 10.0 (ESRI, 2010). There
re totally thirty-five data points over the studied area were used
or the interpolation. The three interpolation methods are briefly
ntroduced as below.

The inverse distance weighed (IDW) method has been used in
eteorological and hydrographical studies in China (Zhao et al.,

005; Tang et al., 2011). It assumes values of predicted points are
nterrelated to those of sampling points nearby and predicts by

eighted averaging of sampling points nearby. The weights are
stimated as a function of distance between two  points, which
ecreases with the increase of distance. The general formula is
iven as (Zhang, 2004):

(x0) =
[

m∑
i=1

1
di

q Z (xi)

]
/

[
m∑

i=1

1
di

q

]
(9)

here Z(x0) is the interpolated value of predicted point x0, Z(xi)
s the value of sampling point xi (i = 1,2,. . .,  m),  di is the distance
etween xi and x0, and q is the power parameter of the distance. In
his study, q was  set to 2.

The local polynomial interpolation (LPI) method is actually a
ocal weighted least squares fitting method. It can reflect the chang-
ng trends of a curved surface well and joint data as smooth as
ossible. The distinguished feature of LPI is that relatively smooth
ransition surfaces can be obtained, especially when data are not
bundant and scattered (Wang et al., 2014).

Ordinary kriging (OK) is a representative geostatistical interpo-
ation method, which assumes the mean is an unknown constant.
t focuses on spatial components and estimates predicted values by
nbiased optimal estimation (Zhang, 2004). The general formula of
K method is given as

(x0) =
m∑

i=1

�iZ (xi) (10)

here �i is the weight of Z(xi).
In order to assess which method gives the best interpolation,

ross-validation was used to compare the performance of different
ethods, in terms of three assessment criteria, the mean absolute

rror (MAE), mean relative error (MRE) and root mean square error
RMSE). The three criteria are expressed as:
AE  = 1
m

m∑
i=1

|xi − x̂i| (11)
agement 179 (2017) 55–63

MRE = 1
m

m∑
i=1

|xi − x̂i|
xi

(12)

RMSE =

√√√√ 1
m

m∑
i=1

(
xi − x̂i

)2
(13)

where m represents the number of sampling points, xi and
x̂irepresents the predicted and sampling values respectively.

2.3.6. Moran I
Global spatial autocorrelation is a general description of spa-

tial characteristics of a certain property, and it is helpful to deeply
understand spatial pattern and spatial differentiation. Moran I is
one of the most frequently used statistics to measure global spatial
autocorrelation, and is calculated as (Moran, 1950)

I =

m

m∑
i=1

m∑
j=1

Wij(xi − x̄)(xj − x̄)

m∑
i=1

(xi − x̄)2
m∑

i=1

m∑
j=1

Wij

(14)

where m is the total sample number, xi is the sampling value of point
i, x̄ is average value, Wij is the spatial weight values between sam-
pling point i and j, Wij was set to 1 if i and j are adjacent, otherwise
0.

The significance test statistic, normalized Z value, is defined as

Z = I − E(I)

[Var(I)]0.5
(15)

I is generally in the range of (−1, 1), a significantly negative value
shows negative spatial autocorrelation, i.e., the similar observation
values (high or low) tend to be spatially scattered; significantly
positive value shows positive spatial autocorrelation.

2.3.7. Grey relational analysis method
The grey relational analysis (GRA) method is developed based on

the grey system theory, and grey system means a system contains
both known and unknown information (Deng, 1989). GRA method
can measure the degree of correlation between the research object
and impact factors, which refers to irrigation water productivity
and selected driving factors in this study. In the system impacting
irrigation water productivity, relations between driving factors and
irrigation water productivity are grey, i.e. the relations are uncer-
tain. Hence it is difficult to distinguish which factors are dominant
factors. Grey relational analysis provides an effective way to solve
such problems (Deng, 2008). The computation procedures are as
follows.

Grey relational coefficient is defined as

�k(i) =
min

k
min

i
�0k(i) + �max

k
max

i
�0k(i)

�0k(i) + �max
k

max
i

�0k(i)
(16)

where k = 1,2,. . .,  l and i = 1,2,. . .,  n,�0k(i) = |x0(i) − xk(i)|, xk (i) is the
kth specific comparative sequence, x0 (i) is the reference sequence
and � is distinguishing coefficient, � ∈ [0,1] and was  set to 0.5 in this
study. The analysis is performed on the standardized data, which is
obtained by the raw data minus the long-term mean and divided by
its related standard deviation of the raw data over the same period.

Grey relational grade is a weighted average of grey relational

coefficients. It is expressed as

rk = 1
n

n∑
i=1

�k(i) (17)
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Table  2
Descriptive statistics and Kolmogorov-Smirnov (K-S) tests of irrigation water pro-
ductivity (kg/m3).

Year Minimum Maximum Mean Std. Deviation K-S test
p value

1981 0.26 0.77 0.51 0.136 0.825
1982 0.34 0.78 0.57 0.128 0.991
1983 0.33 0.82 0.61 0.135 0.827
1984 0.34 0.87 0.64 0.154 0.994
1985 0.39 0.90 0.68 0.156 0.939
1986 0.38 0.90 0.71 0.148 0.963
1987 0.35 1.01 0.72 0.163 0.958
1988 0.44 1.04 0.76 0.156 0.923
1989 0.44 1.06 0.78 0.163 0.992
1990 0.40 1.09 0.81 0.181 0.616
1991 0.41 1.03 0.79 0.180 0.977
1992 0.54 1.09 0.90 0.171 0.538
1993 0.45 1.13 0.91 0.188 0.648
1994 0.65 1.11 0.90 0.155 0.764
1995 0.66 1.14 0.95 0.128 0.896
1996 0.60 1.19 0.99 0.169 0.356
1997 0.63 1.23 1.01 0.169 0.729
1998 0.67 1.36 1.06 0.186 0.790
1999 0.72 1.35 1.09 0.185 0.455
2000 0.58 1.38 1.11 0.219 0.217
2001 0.59 1.56 1.09 0.266 0.919
2002 0.76 1.50 1.15 0.210 0.754
2003 0.76 1.52 1.15 0.195 0.902
2004 0.72 1.60 1.17 0.232 0.999
2005 0.74 1.55 1.17 0.231 0.980
2006 0.75 1.52 1.18 0.236 0.967
2007 0.77 1.56 1.21 0.243 0.896
2008 0.77 1.66 1.19 0.245 0.999
2009 0.72 1.79 1.20 0.292 0.999
2010 0.82 1.71 1.23 0.270 0.538
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Table 3
Results of trend analysis and change-point analysis of irrigation water productivity
from 1981 to 2012.

Kendall test Linear regression analysis Pettitt test

U Regression Equation R2 Sig.

7.36 y = 0.0241x − 47.09 0.968 0 no change-point

U is test statistic of Kendall test, � = 0.01, U˛/2 = 2.58, R2 is coefficient of determina-
tion, Sig. is significance level.

Table 4
Assessment of three interpolation methods for IWP  in three typical years.

Typical year Methods Parameter

MAE  MRE  RMSE

Dry (75%) IDW 0.215 0.201 0.242
LPI 0.244 0.227 0.279
OK 0.215 0.202 0.253

Average (50%) IDW 0.170 0.204 0.265
LPI 0.178 0.212 0.279
OK 0.171 0.207 0.269

Wet  (25%) IDW 0.220 0.190 0.238
LPI 0.253 0.222 0.282
OK 0.224 0.194 0.237

IDW is inverse distance weighted method, LPI is local polynomial interpolation, OK
2011 0.81 1.93 1.25 0.292 0.617
2012 0.88 1.98 1.29 0.295 0.990

here rk is the grey relational grade for the kth comparative factor.
The grey relational coefficient and grade represent the influence

egrees of factors on the reference factor. A higher grade of correla-
ion shows greater influences of the comparative sequence on the
eference sequence, and vice versa.

. Results and discussion

.1. Temporal trend

.1.1. Descriptive statistical analysis
Table 2 shows that the regional average value of IWP  increased

rom 0.51 to 1.29 kg/m3 during the period of 1981–2012, with the
aximum and minimum values in the ranges of 0.77–1.98 kg/m3

nd 0.26–0.88 kg/m3, respectively. This trend is the result of
ncreasing yield and decreasing irrigation water use, resulting from
reed improvement, improved cultivation technique, water-saving

rrigation, and better agronomic management. The standard devia-
ion values also increased slightly, indicating the increased spatial
ariation of IWP, which was mainly due to the varied adoption of
he advanced agronomic and water-saving technologies among dif-
erent counties. The p values of K-S test were all greater than 0.05,
.e., the IWP  data studied were normally distributed.

.1.2. Temporal variation of IWP
Table 3 shows the results of trend analysis and change-point

est. A significant positive trend at significance level of 0.01 is
etected by both Kendall and the linear regression test, which
ndicates that the regional average IWP  has a significant increas-
ng trend. No change-point is observed by performing the Pettitt
hange-point test. Therefore, the IWP  in Hexi Corridor increased
teadily without sudden change for the studied period.
is  ordinary kriging, MAE  is mean absolute error (kg/m3), MRE  is mean relative error,
RMSE is root mean square error (kg/m3). Dry, average and wet year is 75%, 50% and
25% hydrologic frequency of annual precipitation, respectively.

Trends of regional average IWP, irrigation water use, and yield
of cereal crops in the Hexi Corridor from 1981 to 2012 are shown in
Fig. 2. The regional average IWP  and yield increased over time, while
irrigation water use decreased. IWP  from 1981 to 2012 increased
0.78 kg/m3 with an annual growth rate of 3.04%. These results are
consistent with previous studies of IWP  in Northwest China on a
provincial basis. For example, in Gansu province, the average IWP  is
1.36 kg/m3 for the period of 1980–2010; increased IWP  is observed
with increased crop yield and decreased irrigation water use (Cao
et al., 2014).

The annual growth rate of IWP  was  5.45% for the period of
1981–1989, 3.35% for 1990–1999 and 1.26% for 2000–2012. The
increase of IWP  slowed down over the past three decades, as
observed in Fig. 2. The reason is probably that with development of
improved agronomic management and water-saving techniques,
the opportunity for further improving yield level and irrigation
water-use efficiency shrinks, and improvement in IWP  are more
difficult to achieve. For instance, the rate of lining of irrigation
canals has gradually stabilized. In Zhangye Region (including coun-
ties of Ganzhou, Linze, Gaotai, Sunan, Shandan, Minle), intact rates
of high standard lining for trunk and branch canals were 78% and
77% respectively in 1985, 87% and 83% in 2002, 90% and 88% in
2010. It should be noted that during the low-yield level period (e.g.
1981–1989), the grain production capacity was  more influenced
by production inputs such as improved variety, chemical fertiliz-
ers and pesticides (Duan and Wang, 2011). During this period, the
efficiencies of production inputs increased significantly and corre-
sponding yield and IWP  also increased. However, the efficiencies
of irrigation and production inputs reached a stable level, with
the improvement of yield and water-saving level. Therefore the
increase of IWP  became smaller during the high-yield level period,
e.g. the period of 2010–2012 (Molden et al., 2010).

3.2. Spatial variation
3.2.1. Interpolation method assessment
Table 4 shows the results of cross-validation of three interpola-

tion methods (IDW, LPI, OK) for IWP  in three typical years. Typical
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Table 5
Area proportions (%) under different irrigation water productivity (IWP) levels.

Year IWP  levels (kg/m3)

<0.5 0.5–1.0 1.0–1.25 >1.25

1981 58.9 41.1 0 0
1991 0.9 97.9 1.3 0
2000 0 15.2 75.1 9.8
2004 0 6.2 68.0 25.8
2008 0 6.5 61.0 32.5
Fig. 2. Regional average yield, irrigation water use and irrigation wate

ears are selected by hydrologic frequency of annual precipitation
mount (i.e. dry (75% hydrologic frequency of annual precipitation),
verage (50%), and wet (25%)). Predicted values were calculated by
he three methods. It is observed that MAE, MRE  and RMSE of IDW
ere smaller than other the two methods, indicating that IDW is

he relatively optimal method.

.2.2. Spatial distribution of IWP
Fig. 3 shows spatial distribution of IWP  for cereal crops in Hexi

orridor using the IDW method, for the dry year (2004), the average
ear (2008), the wet year (2011), and the mean for the whole study
eriod (1981–2011), respectively. The spatial distribution of IWP
as similar in the three typical years, as shown in Fig. 3a–c, which

ndicates that IWP  was higher in the plain oasis region and lower
n the mountainous and desert oasis (oasis near desert) region. The
ange of IWP  was 0.72–1.60 kg/m3 for the dry year, 0.77–1.66 kg/m3

or the average year, and 0.81–1.93 kg/m3 for the wet  year. IWP  was
ower in the dry year, because yield was reduced due to lack of water
nd irrigation provided a larger portion of the crop water require-
ents due to low precipitation. This is opposite to the results

eported by Droogers and Kite (2001), in which IWP  was lower
n the wet year due to the higher irrigation inputs despite higher
ields.

Annual average IWP  in the Hexi Corridor varied between
.64 and 1.19 kg/m3 across the region, as shown in Fig. 3d. The
igher IWP  values occurred in counties of Linze, Ganzhou, Gaotai,

inchuan, and Liangzhou. The counties, Tianzhu, Minqin, Jiayuguan,
nxi, and Yumen, showed relatively lower IWP  values. In gen-
ral, higher values appeared in plain oasis, due to lower irrigation
ater use. Because in the plain oasis, agricultural management level

s relatively high and soil is mainly loam with good water hold-
ng capacity. Lower IWP  values in mountainous region are due to
ower yield level, mainly caused by the higher elevation and lower
emperatures. In the fringes of the desert areas, dry climate with
igh evaporation is a major constraint for agricultural production,

nd the permeable nature of the sandy soils is another constraint
Mainuddin and Kirby, 2009). In the desert fringes of Minqin county,
and content is over 50% and steady-state infiltration rate exceeds
.15 cm/min (Jia et al., 2006), resulting in high infiltration and low
2011 0 7.4 33.9 58.7
2012 0 3.9 34.0 62.1

irrigation water-use efficiency. Hence, IWP  was lower as a result of
higher application of irrigation water.

To further understand the spatial variation, the IWP  values
were divided into four levels, namely <0.5 kg/m3, 0.5–1.0 kg/m3,
1.0–1.25 kg/m3, and >1.25 kg/m3. The areas in different levels were
calculated through the GIS software, based on the interpolation
map  plotted by the IDW method. The proportions of the area
belonging to different IWP  levels are listed in Table 5. The area
with low IWP  (<0.5 kg/m3) decreased from 58.9% to 0 from 1981
to 2000, while area with high IWP  (>1.0 kg/m3) increased during
the study period. By 2012, the proportion of area with IWP  larger
than 1.25 kg/m3 reached 62%. IWP  values increased cross the whole
region. Fig. 4 shows the distribution of annual IWP  growth rate from
1981 to 2012. The relatively fast increase occurred more in the east
part of Hexi Corridor. For instance, Minqin county gradually became
a relatively high IWP  region, due to river improvement and man-
agement and the development of water-saving irrigation projects.
There were still 3.9% of the area with IWP  less than 1.0 kg/m3 by
2012, as shown in Table 5, implying an opportunity to increase IWP
through better management practices.

3.2.3. Spatial autocorrelation
Table 6 shows the Moran I test statistic values and corresponding

p values. The results show approximately random distribution, as

there is no significant spatial correlation for IWP  in each typical
year with p > 0.05, which demonstrates the complex effects on IWP,
derived by spatial randomness of various factors, such as climate,
soil texture, crop cultivation and agricultural management.
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Fig. 3. Spatial distribution of IWP  of cereal crops interpolated by IDW for (a) dry year 2004 (75% hydrologic frequency of annual precipitation), (b) average year 2008 (50%),
(c)  wet year 2011 (25%), and (d) annual average for the period of 1981–2012.

Fig. 4. Spatial distribution of average annual growth of IWP  from 1981 to 2012.

Table 6
Moran I test statistic values and p values for irrigation water productivity in three
typical years.

Parameter 2004 2008 2011

Moran I 0.0884 0.0868 0.1573
p  value 0.4230 0.4317 0.2038

Table 7
Simple correlation coefficients (R) between IWP  and driving factors.

Factora AI F AF AP T P ET0 DA

R 0.926b 0.984b 0.926b 0.722b 0.750b 0.280 0.161 −0.083

3

3

y
s

Table 8
The top-three ranked driving factors and grey relational correlations for sub-periods
and  the whole period of 1981–2012.

Rank 1981–1989 1990–1999 2000–2012 1981–2012

factor r factor r factor r factor r

1 F 0.858 F 0.819 F 0.918 F 0.878
2  AI 0.728 AF 0.696 AF 0.809 AF 0.771
3  AF 0.720 AI 0.680 AI 0.763 AI 0.751

top-three ranking influence factors during each sub-period and
a The full names and definitions of different factors are listed in Table 1.
b Denotes correlation is significant at 0.01 level.

.3. Analysis of major driving factors

.3.1. Identification of major driving factors

To analyze the major driving factors of IWP, a correlation anal-

sis was first performed to identify the important factors. Table 7
hows correlation coefficients between IWP  and the driving factors.
AI: area supported by unit of irrigation water use, F: fertilization, AF: agricultural
film, r: grey relational grad.

It is found that the area supported by unit of irrigation water use
(AI), fertilization (F), agricultural film (AF), agricultural pesticide
(AP), and annual mean temperature (T) are positively correlated
with IWP, at significance level of 0.01. The remaining factors (i.e.
precipitation, ET0, and disaster area) have no significant correlation
with IWP. These results are basically consistent with the IWP  stud-
ies for other regions. For example, IWP  decreases with the increase
of irrigation water applied (Ali and Talukder, 2008); thus IWP  is
positively correlated with reciprocal of irrigation water use, i.e.
area supported by unit of irrigation water use. Fertilization, agri-
cultural film and agricultural pesticide promote crop growth and
yield (Molden, 1997; Ali and Talukder, 2008; Molden et al., 2010),
and thus have positive correlations with IWP. In addition, suitable
temperature facilitates crop growth and yield and influences IWP  in
northwest China (Hu et al., 2010). Based on the above analysis, the
factors significantly correlated with IWP  are selected as the major
driving factors of IWP.

3.3.2. Grey relational analysis
Table 8 shows the top-three ranking driving factors and grey

relational correlations for sub-periods and the whole period of
1981–2012. Area supported by unit of irrigation water use (AI),
fertilization (F), and agricultural film (AF) were identified as the
the whole study period. These indicate that irrigation and other
agronomic practice inputs, including F and AF, are main con-
straints to the improvement of IWP  in the Hexi Corridor. In arid
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egions, water is a main factor that limits crop yield (Passioura,
006), and irrigation has a strong influence on IWP. Mulching, one
ype of soil surface modification, helps to achieve greater water
roductivity through influencing the energy balance and water bal-
nce components of crop growth system, e.g. helping to increase
rop yield through impacting the soil temperature (Hatfield et al.,
001). Soil nutrients status has shown to have a positive impact on
ater productivity. Improved crop growth and yield resulting from
roper fertilizer additions could lead to increases in IWP  (Hatfield
t al., 2001; Zwart and Bastiaanssen, 2004). Therefore, to improve
WP, advanced water-saving irrigation and rational increase use-
fficiencies of fertilization and agricultural film are essential and
eneficial at the current stage.

. Conclusions

The conclusions are drawn as follows:

1) During the study period of 1981–2012, the regional average
IWP  of cereal crops significantly increased at significance level
of 0.01, without any change-point detected. The rate of annual
growth was slower in the last decade than the earlier two,
which implies the difficulty to further improve IWP.

2) Inverse distance weighed (IWD) method is considered as a pre-
ferred method, for spatial interpolation of IWP  in Hexi Corridor,
compared with two other interpolation methods.

3) Spatial distributions of IWP  in typical years were roughly
similar, i.e. higher in the plain oasis region, lower in the moun-
tainous and desert oasis regions. Annual average IWP  varied
regionally within the range of 0.64–1.19 kg/m3. There were
large differences in IWP  values in different typical years. In the
wet year, IWP  was higher than that in the dry year, as the yield in
the dry year was affected by the drought conditions. There was
no significant spatial autocorrelation, due to the spatial ran-
domness of various factors, such as climate, soil texture, crop
cultivation, and agricultural management.

4) The area with low IWP  (<0.5 kg/m3) decreased while the area
with high IWP  (>1.0 kg/m3) increased from 1981 to 2012. How-
ever, there were still 3.9% of the area below 1.0 kg/m3 by 2012,
implying an opportunity to increase IWP  through regional tar-
geting of better management practices.

5) Area supported by unit of irrigation water use, fertilization and
agricultural film were ranked as the top-three highest influenc-
ing factors. Water and other agronomic practice inputs, such
as fertilization and agricultural film, are key constraints to the
improvement of IWP.

The analysis of IWP  is essential for a better understanding
f variations of irrigation water-use efficiency for Hexi Corridor,
orthwest China. The identification of the major driving factors
rovides insights to explore strategies for improving IWP  and regu-

ating production inputs in this region. A quantification assessment
f the influences of driving factors is needed for further study.
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