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Abstract: Remote sensing technology is widely used to obtain evapotranspiration (ETa), but whether
it can distinguish the differences in farmland energy balance components and ETa under different
irrigation methods has not been studied. We used Landsat 8 data as the primary dataset to drive the
METRIC model and inverted the surface parameters and ETa of the Shiyang River Basin from 2014
to 2018. After improving the METRIC model using Ta obtained by the regression method instead
of interpolation to calculate the net radiation flux (Rn), R2 was improved from 0.45 to 0.53, and the
RMSE was reduced from 61 W/m2 to 51 W/m2. The ETa estimation results on satellite overpass
days performed well, with R2 equal to 0.93 and RMSE equal to 0.48 mm when compared with the
Eddy covariance method (EC) observations. Subsequently, the different growth stages and daily
average ETa estimates of maize were compared with three observations (water balance, WB; Bowen
ratio and energy balance method, BREB; and EC). The daily estimates of ETa correlate well with the
observations of BREB (R2

BI = 0.82, R2
DI = 0.92; RMSEBI = 0.46 mm/day, RMSEDI = 0.32 mm/day) and

EC (R2
BI = 0.85, R2

DI = 0.92; RMSEBI = 0.45 mm/day, RMSEDI = 0.34 mm/day), and the estimation
for drip irrigation was found to be better than for border irrigation. The total accuracy of the ETa

estimation on the five-year overpass day of maize farmland reached R2 = 0.93 and RMSE = 0.48 mm.
With sufficient remote sensing data, the 4-year average ETa of maize was 31 mm lower for DI than
for BI, and the mean value of ETa obtained from the three observation methods was 40 mm. The
METRIC model can be used to distinguish ETa differences between the two irrigation methods in
maize farmlands.

Keywords: Landsat 8; METRIC model; cropland; evapotranspiration; irrigation method

1. Introduction

Evapotranspiration (ET) is the largest outgoing energy flux associated with the water
cycle on Earth and is critical for understanding hydrological and ecological processes
and the causes of global energy imbalances [1,2]. Farmland is one of the main issues
in regional research on climate change and sustainable development and is a hot topic
of international concern [3,4]. Water cycle intensification due to climate change can
drive dry regions and cause more frequent extreme events, negatively impacting global
agricultural production [5–8]. Northwest China is dry and water deficient. Therefore, water
consumption for crop growth is mainly dependent on irrigation supply [9]. Ninety percent
of agricultural water consumption is used for irrigation [10], almost all of which enters
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the atmosphere for evapotranspiration [11,12]. Therefore, it is necessary to map the actual
evapotranspiration quantitatively (ETa) from cropland on a regional scale to understand
the distribution and characteristics of agricultural water consumption in arid areas.

The assessment of ETa is influenced by land cover type, soil moisture, and meteoro-
logical conditions [13]. Traditional observation methods of farmland ETa, such as water
balance, micrometeorological methods, and plant physiology methods, provide methods
to obtain point-scale ETa on a uniform surface. However, the extrapolation of point-scale
data to larger spatial scales involves biases that are difficult to correct due to the natural
dynamics and regional heterogeneity of environmental and surface conditions [2,14–16].
In agricultural and irrigation applications, the crop coefficient method is often used to
narrow the range of ETa to crop evapotranspiration (ETc) [17]. ETc is usually obtained
by multiplying the reference evapotranspiration (ETr) by a dimensionless attenuation co-
efficient known as the crop coefficient (Kc). The ETr estimation models in the literature
can be broadly categorized into (1) full physical models based on the principles of mass
and energy conservation, (2) semi-physical models considering the principles of mass
and energy conservation, and (3) empirical relational and machine learning black-box-
based models [18,19]. ETr is often calculated from meteorological data using the FAO-56
Penman–Monteith (PM) modeling approach recommended by the Food and Agriculture
Organization of the United Nations (FAO) [20]. Kc can be determined based on the crop
type and stage of growth and is subject to variations caused by different environmental con-
ditions [21,22]. However, it is unclear whether the actual crop type and growth conditions
are consistent with those represented by idealized Kc values in arid regions. In addition, the
application of the Kc method over large areas can be limited by its inability to determine the
growth stages of multiple crops [23,24]. With the rise of intelligent algorithms and remote
sensing technology, which has large-capacity and large-scale data collection characteristics,
high spatial and temporal resolution Earth observation data can be calculated to map the
spatiotemporal changes in ETa [22,24,25].

Evapotranspiration can be estimated using two or more consecutive satellite images
that provide the spatial distribution of the required factors, regardless of soil conditions,
crops, and farm management [26]. Remote sensing evapotranspiration models can be
classified into two categories, single-source and dual-source, depending on the residual
energy balance theory for the soil–plant–atmosphere interface [27,28]. The single-source
model treats soil and crop vegetation as a whole, whereas the dual-source model separates
soil and vegetation based on vegetation indices [29]. Both types of models generally
estimate the latent heat flux (LE) from the residual term of each image pixel, which is
obtained using net surface radiation (Rn) minus soil heat flux (G) and sensible heat flux
(H) [25,30]. When the auxiliary data are sparse, the single-source model can provide higher
accuracy than the dual-source model because it requires less parameter input [28,29].

Allen et al. [31] proposed mapping evapotranspiration at a high resolution with an in-
ternalized calibration (METRIC) model based on the Surface Energy Balance Algorithm for
Land (SEBAL) model [32]. The METRIC model has several advantages and improvements
over other single-source models.(1) This model redefines the rules for estimating H under
extremely cold and hot conditions by introducing ETr as a ground reference. (2) The model
considers elevation, convection, and wind speed and also improves the application of the
model in areas with large terrain fluctuations and the extension method of instantaneous
ET [33–35]. (3) In the METRIC model, the linear relationship between the near-surface
temperature gradient (dT) and surface temperature (Ts) was calibrated using the inverse
model under an extreme condition (CIMEC) process and theoretically defined extreme
hydrological conditions (cold, hot), eliminating the need to map H with air temperature
(Ta) within the modeling domain. Furthermore, the CIMEC process excludes potential
biases related to surface energy balance components (SEBCs), radiometric corrections, and
model assumptions [33]. (4) Initially, the METRIC model was designed for Landsat satellite
imagery to maximize the accuracy of evapotranspiration estimates [28]. (5) Globally, this
model has been successfully implemented in multiple irrigated agricultural areas and
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is considered effective for providing spatially distributed ET [36]. Current research has
focused on the development of ETa estimation tools that use simpler platforms to improve
the range of model use and estimation accuracy [37].

Ensuring high-quality and sustainable development of agricultural water use is neces-
sary to solve the main problem of water use in the Shiyang River Basin in the arid area of
northwest China. Maize is a widely distributed crop that adapts to the local climate. Border
irrigation (BI) is still widely used as a traditional irrigation method in corn farmlands in
northwest China. Compared with drip irrigation (DI), BI results in high soil evaporation
and lower irrigation water use efficiency [38]. With the development and promotion of
water-saving technology, many studies have compared the impacts of the two irrigation
methods. Previous studies have proved that DI can accelerate the growth of maize and
reduce water consumption [39]. The accuracy of remote sensing technology for obtaining
ETa has been verified in many cases. However, can remote sensing technology detect ETa
differences caused by different irrigation methods in maize croplands?

Therefore, the METRIC model was coded on the Google Earth Engine (GEE) platform
to estimate various surface parameters using Landsat 8 images as the primary data source
in this study. After the accuracy of the instantaneous surface energy fluxes was verified,
the SEBCs of maize farmlands under BI and DI were compared. In addition, the accuracy
of the ETa estimation at the satellite overpass days and at each growth stage obtained from
the METRIC model was verified. Finally, the ability of remote sensing to discriminate
differences in ETa in maize farmlands under different irrigation methods was assessed.
This study provides a basis for determining whether satellite remote sensing can be utilized
to accurately monitor farmland in the future.

2. Materials and Methods
2.1. Study Area

The Shiyang River basin is located in the arid region of northwest China, with a
coordinate range of 101◦40′–104◦20′E and 36◦30′–39◦30′N, an area of 41,600 km2, and an
altitude of 1244–5220 m (Figure 1). The landscape is a complex mountain–oasis–desert
ecosystem, of which approximately 10% is oasis farmland. The basin has a temperate, arid
continental climate with abundant light and heat resources, an annual sunshine time of
3028 h, and a frost-free period of more than 150 days, which is suitable for the growth of
commercial crops [40]. However, the average annual precipitation is less than 200 mm, the
evaporation of the pan is 2000 mm, and the average depth of groundwater is 25 m. Because
the water demand for local crops is much higher than precipitation, farmlands must be
irrigated with surface water and groundwater as the main water source.
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2.2. Remote Sensing, Auxiliary Data, and Data Processing

The Landsat 8 satellite is equipped with two sensors: OLI and TIRS. The OLI land
image includes nine bands, including a 15 m panchromatic band. The other bands have a
spatial resolution of 30 m and an imaging width of 185 km. The resolution of the two ther-
mal infrared bands of the TIRS is 100 m, which helps to distinguish and calculate the surface
and atmospheric temperature. This study used four Landsat 8 images covering the entire
study area, numbered 131/033, 131/034, and 132/033, 132/034 (Figure 1). Unfortunately,
there are only five meteorological stations in and around the study area that can provide
relevant data.

Google Earth Engine (GEE) (https://earthengine.google.com/ (accessed on
25 December 2023)), a cloud computing-based geospatial processing platform, uses Google’s
computing infrastructure for rapid analysis [41]. Almost all built-in algorithms of the plat-
form use pixel-by-pixel computing, which can efficiently process and mine remote sensing
data globally. This study used the online JavaScript API of the GEE platform to invoke
and analyze Landsat 8 raw and surface reflectance product (SR) datasets from public cata-
logs and Landsat 8 images courtesy of the U.S. Geological Survey. Images with less than
30% clouds from 2014 to 2018 were efficiently selected, cloud removed, stitched, cropped,
subjected to parameter inversion, and interpolated for meteorological data. The METRIC
model was encoded and processed on the platform, and the model process is illustrated
in Figure 2. The model only outputs the ET inversion results, significantly improving
computational efficiency.
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2.3. In Situ Dataset

Observations of ETa and energy fluxes were obtained from seed maize fields in and
near the National Field Scientific Observation and Research Station on Efficient Water
Use of Oasis Agriculture in Wuwei, Gansu Province. The maize farmlands used for
the observations were not fixed because of local adjustments in field production. These
locations are shown in Figure 1. In 2014–2018, the flux/ETa locations of the BI observation
areas were at Site I, Site I, Site III, Site IV, and Site V, respectively, and the flux/ETa locations

https://earthengine.google.com/
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of the DI observation area were at Site II, Site IV, Site I, Site I, and Site I, respectively (see
Table 1 for field information) [38].

Table 1. Different field management information, surface energy flux observation locations, and the
number of remote sensing images.

Crop Irrigation
Method Years Site Area Growth

Period Days

Number of
Remote Sensing

Images

Observation
Method

seed maize

border irrigation
under mulch

field

2014 I
400 m × 200 m

149 8

Water balance
method; Bowen
ratio and energy
balance method;
Eddy covariance

method

2015 I 155 6
2016 III

500 m × 250 m
154 7

2017 IV 147 6
2018 V 159 8

drip irrigation
under mulch

field

2014 II 2000 m × 1000 m 134 8
2015 IV 500 m × 250 m 132 6
2016 I

400 m × 200 m
144 7

2017 I 142 5
2018 I 146 8

In this study, the eddy covariance (EC), Bowen ratio energy balance (BREB), and
soil water balance (WB) methods were used to systematically compare and observe the
components of water–heat fluxes in seed maize fields under mulched border irrigation and
drip irrigation under membrane over the whole growth stage, respectively.

The EC system mainly consists of a three-dimensional sonic anemometer/thermometer
(model CSAT3, Campbell Scientific, Inc., Logan, UT, USA), a Krypton hygrometer (model
KH20)/an open path gas analyzer (model EC150, Campbell Scientific, Inc., USA), a tem-
perature and humidity sensor (model HMP45C/HMP155A, Vaisala, Vantaa, Finland), an
infrared radiometer (model SI-111, Campbell Scientific, Inc., USA), a net radiometer (model
NR-LITE/CNR4, Kipp & Zonen, Delft, the Netherlands), two soil heat flux plates (model
HFP01, Hukseflux, the Netherlands), and a date logger (model CR1000/CR3000/CR5000,
Campbell Scientific, Inc., USA) [39,42]. The installation height was 4 m above ground level
in 2014 and 2016–2018 and 3.5 m above ground level in 2015. The net radiometer and
surface temperature sensors were installed at the same height as the three-dimensional
sonic anemometer/thermometer. Two soil heat flux plates were buried 5cm below the
surface of the mulched soil and the bare ground between the mulches, respectively. All
sensors were located in the BI and DI observation areas and were connected to a data logger,
and the system sampled at a frequency of 10 Hz and output energy flux data every 30 min.
The systems are all installed in the middle of a flat and open observing area, which meets
the requirements of the EC system for wind and wave areas [43].

The Bowen ratio energy balance method is based on the energy balance equation and
the diffusion theory of near-surface gradients to estimate LE and H [44]. BREB measure-
ments require two temperature and relative humidity probes (model HMP155A, Vaisala,
Vantaa, Finland) at different heights to monitor the gradient of temperature and humidity.
There are also probes that can be shared with the EC system, such as a radiometer and soil
heat flux panels.

In addition, soil moisture probes (model CS616, Campbell Scientific, Inc., USA) were
installed at 20 cm, 40 cm, 60 cm, 80 cm, and 100 cm below the soil surface to monitor soil
moisture changes, which can be used in WB methods.

The collected EC flux data were processed using Eddy Pro 4.0 software, and then the
quality of the EC data was assessed. Data that were unreliable and out of experimental
range were removed. Linear interpolation was used to fill in data gaps when fewer than
four consecutive observations were missing, and MDV (mean daily variation) was used
when five or more observations were missing. For the BERB flux data, the data were
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corrected using the directivity judgment method and the rejective region method [45]. The
method for filling data gaps was the same as that used for EC flux data [39].

The EC technique is recognized as the standard micrometeorological method for mea-
suring ET because of its high measurement accuracy and sampling frequency. This tech-
nique can accurately obtain ET information over a wide range of scales [23,46] and has be-
come the primary method of the International Flux Observation Network (FLUXNET) [47].
The instantaneous flux data of the EC system in 2014–2015 were utilized to validate the
remote sensing data retrieval of the satellite transit time.

3. Surface Parameters Determination

When satellite remote sensing data are acquired for ETa, the energy information of the
soil, vegetation, and atmosphere, as well as other characteristic parameters, must first be
obtained through image processing techniques [48].

3.1. Surface Parameters

This study used datasets (atmosphere and surface reflectance products) in the GEE
platform to invert the surface temperature of the study area based on the atmospheric
correction method. The radiative transfer equation of the thermal infrared radiance value
Lλ received by the satellite sensor is expressed as follows [49]:

Lλ = [εB(Ts) + (1 − ε)L ↓]τ + L ↑ (1)

where Lλ is the spectral radiance value at the top of the atmosphere at the band λ

(W·m−2·µm−1·sr−1), ε is the surface-specific emissivity, B(Ts) is the blackbody thermal
emissivity brightness (W·m−2·µm−1·sr−1), L ↓ is the downward radiance of the atmo-
sphere after reflection on the ground (W·m−2·µm−1·sr−1), τ is the atmospheric ther-
mal infrared band transmittance, and L ↑ is the upward radiance of the atmosphere
(W·m−2·µm−1·sr−1).

Thermal infrared radiance values were provided by the 10th band of the Landsat 8
image, and the formula for calculating B(Ts) is:

B(Ts) =
[Lλ − L ↑ −(1 − ε)τL ↓]

τε
(2)

Ts =
K2

ln
(

K1
B(Ts)

+ 1
) (3)

where Ts is the surface temperature (◦C), K1 = 774.89 W·m−2·µm−1·sr−1, K2 = 1321.08 K.
For areas with a sparse and uneven distribution of meteorological stations, the ex-

tended results of interpolating the Ta data of meteorological stations on a regional scale
are affected by the heterogeneity of the surface [50]. Meanwhile, the atmospheric radiation
value caused by Ta cannot be obtained directly from satellite images due to its complex
proportion and low total amount. Using the surface parameters obtained from remote
sensing inversion to establish a regression relationship with meteorological station data,
regional Ta data were obtained. The regression algorithm for calculating Ta was established
by Liu et al. [51]:

Ta = b0 + b1Ts + b2α + b3NDVI + b4 A + b5x7 + b6x8 (4)

where Ta is the near-surface air temperature, Ts is the surface temperature, α is the
surface albedo, NDVI is the normalized difference vegetation index, A is the altitude,
x7 = (J − 200)2 is the independent variable, and J is the Julian day. Ts and J are inde-
pendent variables and have a strong correlation. Therefore, x8 = x7 × Ts is used as the
interaction term to match the model, and b0∼b6 are undetermined coefficients.
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For latent heat estimation, the meteorological data and physiological characteristics
of the vegetation structure (vegetation index and vegetation coverage) are indispensable
for describing the atmospheric boundary layer. Point-scale wind speeds from five surface
meteorological stations (http://data.cma.cn/ (accessed on 25 December 2023)) in and
around the basin were interpolated and expanded using inverse distance weighting (IDW).

Surface reflectance (α) is the ratio of reflected solar radiation to incident solar radiation
in the short-wave spectrum (0.2–3.2 µm) [33]. Flood [52] compared the surface albedo
calculated by Landsat 8 OLI and Landsat 7 ETM+. The surface albedo results calculated
by these two sensors were highly consistent. Therefore, after application comparison, the
parameters given by Liang [53] for Landsat 7 were used:

α = 0.356b2 + 0.130b4 + 0.373b5 + 0.085b6 + 0.072b7 − 0.0018 (5)

where α is the broadband surface reflectance; b2, b4, b5, b6, and b7 are the surface reflectance
of subscripted bands, respectively.

3.2. METRIC Model

Based on the surface energy balance principle (Equation (6)), the METRIC model
obtains the latent heat flux (LE) after determining the other three instantaneous energy com-
ponents and converts it into instantaneous ETa. Based on the available Landsat 8 images,
the METRIC model was used to estimate the ETa in the Shiyang River Basin.

λETinst = LE = Rn − G + H (6)

Rn = (1 − α)RS − RL ↑ +εsRL ↓ (7)

RS = GSC × dr × τsw × cosθ (8)

RL ↑= ε × TS
4 × σ (9)

RL ↓= 1.08 × (−lnτsw)
0.265 × Ta

4 × σ (10)

τsw = 0.75 + 2 × 10−5 × z (11)

To represent relatively homogeneous atmospheric conditions within a region, the
METRIC model assumes that the Ta of the calculated region is consistent with the Ts of the
cold spots [54]. However, the study area is an alpine alpine–desert–oasis ecosystem, with
large differences in vegetation types and a high proportion of desert areas. In particular, Ts
varies considerably across land cover types when the ground surface is dry [55]. Therefore,
the assumptions of the METRIC model for calculating RL ↓ do not apply to this region.
Further comparison of the differences in Rn estimation accuracy between the two methods
of estimating Ta is required. According to the calculation formula above for Rn, the Ta
obtained in two distinct ways is substituted into the Rn calculation. The results were
verified using instantaneous flux observation data corresponding to satellite overpass days
in 2014–2015 (the overpass time of Landsat 8 was local from 11:43 to 11:49 a.m.).

Soil heat flux (G) refers to the energy stored in soil and vegetation. G was used to
estimate the available energy (Rn − G), which can be divided into H and LE [28]. We
have tried to avoid introducing more parameters from empirical formulas while better
representing complex surface conditions and vegetation changes [32]. In this study, the
estimation method proposed by Bastiaanssen [56] was used to obtain G:

G =
(Ts − 273.15)

α
(0.0038α + 0.0074α2)(1 − 0.98NDVI4)Rn (12)

Sensible heat flux (H) was estimated from the aerodynamic function:

H =
ρairCpdT

rah
(13)

http://data.cma.cn/
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There are two unknown variables (dT and rah) in Equation (13), making it challenging
to obtain H. Therefore, the algorithm needs to determine the two extreme pixels (hot and
cold pixels) and then compute dT and rah by a trial-and-error method during the iteration
process. There are many studies describing the computation of H, which will not be
repeated here [31,33]. The process is shown in Figure 2, where the selection of hot and cold
pixels is crucial for the estimation of H.

The METRIC model assumes that the hot pixels are dry, hot, and bare soil without
vegetation, so LEhot = 0.05 × λ × ETr_hourly, Hhot = Rn_hot − Ghot − LEhot. In contrast, the
cold pixels are saturated with vegetation and have excellent water supply conditions, so
LEcold = 1.05 × λ × ETr_hourly, Hcold = Rn_cold − Gcold − LEcold [33].

When selecting extreme pixels, it is necessary to refer to the NDVI, α, and Ts simulta-
neously. The pixels with NDVI less than 0.1 and the hottest 20% of Ts were regarded as hot
pixels. “Ideal candidate cold pixels” recommend α in the range of 0.18–0.25, with low Ts
and NDVI in the range greater than 0.8. Generally, after the cold pixels meet the α range,
the first 5% larger NDVI is selected, and the pixels with the lowest 20% Ts were determined
as the cold pixels. If there are no suitable pixels, the α range can be adjusted by ± 0.02 [34].

Through the latent heat of the water vaporization parameter, instantaneous surface
evapotranspiration (EToverpass) was obtained. Then, we calculated the reference evapotran-
spiration fraction (ETrF) combined with the instantaneous reference evapotranspiration
(ETr). The instantaneous reference evapotranspiration (ETrhourly) was calculated with refer-
ence to the sinusoidal variation curve of evapotranspiration in sunny days by Equation
(16). It is assumed that the ETrF does not change within a day, and the mean value of the
satellite overpass days is the same as the value of the satellite overpass time.

EToverpass = 3600 × LE
λ

(14)

λ = (2.501 − 0.00236 × (Ts − 273))× 106 (15)

ETrhourly =
ETrdaily × π × sin

(
πt

N−2
)

2(N − 2)
(16)

ETrF =
EToverpass

ETrhourly

(17)

ETdaily = ETrF × ETrdaily (18)

In regions with different seasons, ideal vegetation conditions are not always available
or provide cold pixels. Therefore, in the non-growing period when no well-growing
crops completely cover the ground, the selection range of the cold pixels must be adjusted
appropriately. When the NDVI of cold pixels is lower than 0.75, the ETrFCold can be adjusted
to less than 1.05 [54,57]. Normally, hot pixels lack water for evaporation, but ETrFHot can
be adjusted to be greater than 0.05 if rainfall results in soil evaporation residuals [34].
The transport of water vapor and H on Earth’s land surface is strongly influenced by
aerodynamic processes, including wind speed, turbulence, and buoyancy, but all of these
are difficult to determine for satellites. In addition, surface albedo, Rn, and G cannot be
quantified with complete precision. Therefore, despite the best efforts to estimate each
parameter accurately, some bias can still occur. The introduction of ETr calibration in
the METRIC model helps to compensate for this bias by introducing a bias correction in
the H calculation. Ultimately, the inherent bias in the Rn, G, and H subcomponents was
eliminated by subtracting the bias in H.

Landsat 8 provides optical remote sensing data and is susceptible to cloudy weather
with long overpass revisit times. Therefore, the METRIC model, which assumes a constant
ETrF, is used to estimate ETa for dates near the satellite overpass date [29]. We used
the cubic B-spline method to simulate the ETrF profile of maize during growth. Many
researchers have used the cubic B-spline method to determine numerical schemes for
solving boundary value problems because of their flexibility and reliability in finding
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an approximate solution at any occasion in the domain [58]. The ETtotal formula for the
corresponding crop growth period is as follows:

ETtotal =
n

∑
i=1

ETdailyi
(19)

Appendix A lists the meanings and units of the parameters used in Equations (6)–(19).

3.3. Coding and Validation of the METRIC Model

We applied JAVA programming to the METRIC model shown in Figure 2, which
can directly use the remote sensing dataset and the powerful pixel-by-pixel computing
capability provided by the GEE platform. The main processes include image filtering,
stitching, clipping, surface temperature, and other parameter operations. The operation
process has two points that require special attention: (1) after restricting the conditions of
NDVI, Ts, and α in the study area, the code selects the eligible areas autonomously and
then subsequently makes manual judgments and selections; (2) the momentum transport
stabilizing factors (ψm) and the heat transport stabilizing factors (ψh) are introduced, and
the air density (ρair) and aerodynamic resistance (rah) are operated for several iterations
to obtain stable H values. The technical route to indicate the overall flow of the study is
shown in Figure 3.
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The energy balance components and the ETa of the model output were validated
against the corresponding observations. The EBC was validated using instantaneous data,
and the ETa was validated using daily and growth stage observations. The coefficient of
determination (R2), root mean square error (RMSE), and bias were used to understand the
agreement between the model estimates and in situ datasets.

R2 =
∑N

i=1
(
yi − O

)2

∑N
i=1
(
Oi − O

)2 (20)

RMSE =

(
1
N

N

∑
i=1

(yi − Oi)
2

) 1
2

(21)
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Bias =
1
N

N

∑
i=1

(Oi − yi) (22)

where N is the number of dates (days), yi is the estimation of EBC or ETa at the ith day
using the METRIC model, Oi is the measured value of the corresponding day, and O is the
average value of the measured values.

4. Results and Discussion
4.1. Inversion Accuracy of Energy Fluxes

The average Ta data obtained using the regression model (described in Section 3.1
Surface parameters) were more conducive to calculating the instantaneous Rn (Figure 4a)
compared with Ta from meteorological data. Although the overall estimated results were
higher than the observed value, the R2 increased from 0.45 to 0.53, the RMSE decreased
from 60.76 to 50.85 W/m2, and the bias increased from −29.24 to −16.66 W/m2. This
improvement can be attributed to the fact that the data interpolated from the weather
station are much higher than the actual Ta data of the farmland, and the temperature data
obtained by the regression model are more in line with the practical situation.
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(a) net surface radiation (Rn), (b) soil heat flux (G), (c) sensible heat flux (H), and (d) latent heat flux
(LE). R2 is the coefficient of determination. RMSE is the root mean square error (W/m2).

The verification results of G were similar to those of the Rn verification. The estimated
G showed that the R2 was only 0.43, but its RMSE value was 39.39 W/m², and the bias was
−5.99 W/m² (Figure 4b). High G values indicate that the soil absorbs more heat when the
surface energy fluctuates significantly and is prone to error. The surface temperatures of
different land cover types are quite different when the ground surface is in a spanking dry
state, affecting the dT and H estimations of each pixel.

The instantaneous LE was derived as the residual term of the energy balance equation
(Equation (6)). Most of the points in the scatter plot (Figure 4d) after validation were close to
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the 1:1 line, and the estimated values were slightly lower than the observed values; the R2,
RMSE, and bias were 0.88, 42.44 W/m2, and 43.30 W/m2, respectively. Furthermore, LE was
less affected by the errors of the other fluxes, and its estimation accuracy was superior to
that of all other flux components. These results are related to the kernel of the METRIC
model, which utilizes internal self-calibration (inverse modeling at extreme conditions,
CIMEC) to remove the effects of biases associated with surface reflectance, temperature,
and estimations of G and H [54,55]. Oliveira et al. [59] used the METRIC model to estimate
the surface energy balance components for three landscapes (sugarcane, woody savanna,
and stricto-sensu savanna) in the Brazilian Cerrado, where the LE estimation accuracy for
sugarcane was the best (RMSE = 21.43W/m2, R2 = 0.94) and the LE estimation accuracy
was the lowest for woody savanna (RMSE = 56.38W/m2, R2 = 0.93). Carrasco-Benavides
et al. [60] estimated H and LE in vineyards with RMSE in the range of 35–48 W/m2 using
METRIC models at the time of satellite overpass. Ortega-salazar et al. [55] estimated H and
LE in olive groves below the observed values (RMSEs of 46 and 45 W/m2, respectively),
obtaining similar results to those of this study. Feng et al. [61] used an optimized two-source
energy balance (TSEB) model to estimate LE for maize farmland in the Heihe River Basin,
with an RMSE = 85 W/m2. Ge et al. [62] used the SEBS model to estimate the energy
balance components of alpine and subalpine meadow on the northern Tibetan Plateau
(RMSEH = 68.2 W/m2 and RMSELE = 54.9 W/m2).

Proper selection of hot and cold pixels can correctly partition the available energy
(Rn − G) into H and LE, which will improve the accuracy of LE. Therefore, the performance
of the METRIC model in the final LE estimation indicates the applicability of extreme point
selection conditions in the study area. The Landsat 8 satellite has a long revisit, and the
ground-based flux observations were made only during the maize growth period. Just
in case two years of verifiable flux data were not sufficient, we used five years of model-
derived flux data to compare with measured leaf area index (LAI) to further analyze the
reliability of the METRIC model.

The flux data of H and LE under the two irrigation methods from 2014 to 2018 were
compared and analyzed concerning the trends and differences in the measured LAI data
(Figure 5). In standard years (except for 2017), maize under the DI method grew better than
BI, with LAIDI > LAIBI in the early and middle stages of the growth process, while there
were more cases of higher values of LEDI. In 2017, maize under the DI treatment was more
affected by the rust disaster and did not grow as well as in standard years, so LEBI > LEDI
on most dates. Although LEBI > LEDI on July 22 and 7 August 2016, the difference was not
large, both were less than 6%, and the HBI > HDI of the two dates was similar to that in
other years. After 21 July 2018, the maize LAI of DI was still greater than that of BI, but
the LAI of DI had an obvious downward trend and aging was rapid, so the value of LE
was small. The comparison concluded that LE was correlated with LAI in maize farmland
(Figure 6), which is a convergent saturation process, and the R2 of the quadratic fitted
curve for LE-LAI was higher under DI (R2

DM = 0.89, R2
BM = 0.77). This is similar to other

biophysical variables being related to LAI due mainly to the attenuation and absorption
exponential process of radiation as the layers of vegetation increase [63]. The overall
difference in H under the different irrigation methods was pronounced, and HBI > HDI was
more frequent (71.4%), except in 2017. Therefore, the H was lower in the maize farmland
under the DI treatment at the midday moment on a clear day when satellite data were
available. The above demonstrates that the allocation of Rn to seed maize farmland under
the DI method is biased towards LE, leading to higher ETa on transit days, which would
promote maize growth.
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Figure 6. Plot of LE results from METRIC model estimation against LAI observations from 2014 to
2018. DI is the drip irrigation method. BI is the border irrigation method.

4.2. Satellite Overpass Daily ETa Validation

With a reasonable selection of hot and cold pixels, the correct division of H and
LE improves the accuracy of the LE. Validation of the flux data showed that the surface
parameters and selection of extreme points in the model were applied to the study area.
Furthermore, we estimated ETa during the growth period of the maize seed. Observation
data obtained from EC systems at four different locations and years were used to validate
the ETa obtained from remote sensing data for different crops and irrigation methods from
2014 to 2018.

The instantaneous LE values were converted to the moment ETa of overpass and
then extended to the daily value. This step is essentially an extension of the reference
evapotranspiration ratio, assuming that ETrF remains constant on the day of the satellite
overpass. For comparison, we extracted the estimated values of ETa under different irriga-
tion methods for seed maize production and plotted them against with ETr (Figure 7a–e).
As the maize grew, ETa, ETr, and their ratio ETrF changed, showing an increasing and then
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decreasing trend. At the early stage of maize growth, ETa under both irrigation methods is
much lower than ETr, with ETrF < 1.0. With the arrival of the peak growth stage in July and
August, ETa is larger than ETr, with ETrF > 1.0. Before the end of the reproductive period,
the difference between ETa and ETr values was smaller.
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Figure 7. Estimations of ETa, ETrF, and time-expanded curves (a–e) with accuracy performance (f) for
maize under two irrigation methods at Landsat 8 overpass days, 2014–2018. ETa (mm/day) and
ETr (mm/day) are daily actual and reference evapotranspiration, respectively. ETrF is the reference
evapotranspiration fraction. DI is the drip irrigation method. BI is the border irrigation method. R2 is
is the coefficient of determination. RMSE is the root mean square error (mm/day).

The METRIC model had the highest goodness of fit for the estimation of ETa under
the DI treatment in 2014, with R2 = 0.99; however, in the same year, the BI treatment had
the lowest R2, with R2 = 0.85, whereas the estimation with the smallest value of bias was
that of the BI in 2015, with RMSE = 0.16 mm/day, and that of the DI in 2018 had the largest
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bias value, with RMSE = 0.78 mm/day (Figure 7f). Overall, the accuracy of the daily ETa of
maize obtained from the estimation was high.

This study required long-term baseline observations of large areas of agricultural land,
which were used to fully validate the low-temporal-resolution Landsat remote sensing
images. Therefore, we used five years of measured data to validate the accuracy of the
remote sensing model in estimating ETa in agricultural fields. The results of some studies
are similar to those we found, suggesting that the METRIC model performs well in farmland
evapotranspiration inversion. For example, Nisa et al. [37] used three models based on
Landsat 7 data to estimate daily ETa from fennel/maize/ryegrass clover cropland rotations
in a Mediterranean context in southern Italy and found that the SEBS and METRIC models
performed well (R2 = 0.59, RMSE = 0.71 mm/day; R2 = 0.65, RMSE = 1.13 mm/day).
Kamyab et al. [64] used the SEBAL and METRIC models to map ETa on maize farmland in
Iran, and the results showed a higher correlation and smaller RMSE for METRIC estimates
than for SEBAL estimates (R2 = 0.885, 0.793; RMSE = 0.711 mm/day, 1.046 mm/day). Xue
et al. [65] estimated daily ETa for maize using three remote sensing evapotranspiration
models, METRIC, pySEBAL, and SEBS, and found that all of them overestimated ETa,
among which SEBS performed better (R2 = 0.74, RMSE = 1.0 mm/day) than pySEBAL
(R2 = 0.72, RMSE = 1.08 mm/day) and METRIC (R2 = 0.78, RMSE = 1.2 mm/day). Reyes-
gonz et al. [66] used the METRIC model to estimate ETa for a commercial maize farmland
and compared it to field measurements, with a high coefficient of determination (R2 = 0.89)
and low RMSE (0.71 = mm/day). Comparisons of METRIC and EC ETa at the four sites
of eastern Washington State for five crops (winter wheat, spring garbanzo, spring canola,
spring barley, and spring pea) by khan et al. [67] showed reasonable agreement, with an
RMSE of 0.4 mm/d on satellite overpass days. Ortega-Salazar et al. [55] used the METRIC
model to invert evapotranspiration in drip-irrigated olive orchards, and their RMSE for
daily ETa was 0.42 mm/day.

The acquisition of daily ETa data is limited to sunny days with satellite overpasses,
and such data are insufficient for a complete representation of the process during the
entire growth period. Therefore, the cubic B-spline method was needed to extend the ETrF
available during the maize reproductive period to the entire reproductive period. The
interpolation results reveal that the ETrF curves for most years in Figure 7a–e are consistent
with previous maize-related monitoring studies [68]. Unfortunately, the disadvantage of a
small amount of image data is that it is difficult to overcome because of the single source of
remote sensing image data. The lack of high-quality remote sensing images with few clouds
in May 2014 and 2015 is more critical in the growth stage, leading to the ETrF interpolation
curve pattern of the corresponding years being less consistent with other images.

However, remote sensing data were still effective in qualitatively describing the ETa
trends of maize in most years. Ground measurements of LAI (Figure 5) indicated that maize
under the DI treatment reached peak growth earlier than that of BI. As it was not possible
to measure the LAI of maize during the initial growth stage, it was deduced from the maize
growth that LAIDI was greater than LAIBI until May. Figure 6 shows that LE had a positive
correlation with LAI, and that a high LAI value caused a higher LE value, which in turn
affected the value of ETa. Therefore, except for 2017, the ETrF under the DI treatment was
always higher than that under the BI treatment in the initial stage of maize growth in other
years. The ETrF curve also reflects the disease infestation of corn under DI in 2017, which is
in clear contrast to other years when the ETa of DI was higher than that of BI.

Previous studies have concluded that drip irrigation saves water and improves water
use efficiency, primarily by reducing soil evaporation, compared to other irrigation methods.
Traditional irrigation methods such as border irrigation may lead to high soil evaporation
rather than crop transpiration, resulting in high evapotranspiration, which masks the
potential water stress of the crop throughout the growth cycle [69,70]. However, asynchrony
in the timing of the two irrigation operations in the study would increase soil evaporation
from the farmland at different time periods, resulting in ETa from the farmland that can
sometimes be inconsistent with maize growth. In addition, as maize grows, the crop has
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almost 100% leaf cover and no bare soil, narrowing the differences in ETa between the two
irrigation methods. Both irrigation methods followed the local production pattern, and
irrigation scheduling was optimal. Consequently, it is difficult to distinguish between the
two irrigation methods using only the daily ETa obtained from satellite remote sensing data.
There was also an uncertain relationship between the two ETrF curves after interpolation.
Based on the available data or curves, it is not possible to intuitively determine which
irrigation method consumes more water. Therefore, it is necessary to extend the ETa of the
two maize farmlands over the entire growth stages and continue to explore the differences
in the ETa of seed maize under the two irrigation methods.

The trend In ETa over time was distinct for maize, with clear boundaries between the
different farmlands. Combined with the vegetation distribution in Figure 8, there were no
ETa anomalies in the farmlands of the same crop (Figure 9), confirming the suitability of
the spatial distribution of ETa obtained from the estimation. At the beginning of maize
growth (May), the ETa for maize croplands was below 3 mm/day under both irrigation
methods. When maize was rapidly growing, such as on 10 and 26 June (NDVIDM = 0.39,
0.76, NDVIBM = 0.28, 0.64, respectively, shown Figure 8), combined with the NDVI of the
crop growth process, the growth of seed maize under DI was better than under BI. Therefore,
the ETa of DI during the fast growth stage of maize was higher than that of BI. In the middle
and late stages of maize growth (July 12 and 21 and August 22), as shown in Figure 7, the
ETa of BI was slightly higher than that of DI (ETDI = 6.99, 6.54, and 5.31 mm; ETBI = 7.49,
6.80, and 5.45 mm). The inspection of vegetation in the two fields (NDVIDI = 0.75, 0.71, and
0.68; NDVIBI = 0.80, 0.77, and 0.76) showed that the growth of BI maize was better than that
of DI maize. Combined with previous studies, DI accelerated maize growth and shortened
the entire experimental period [38,39]. Therefore, it is reasonable that DI maize enters the
decline stage earlier, and its ETa is lower than that for BI maize.
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Figure 8. Spatial and temporal variability of NDVI on satellite overpass days at three observation
sites in 2018. NDVI is the normalized difference vegetation index. DI is the drip irrigation method. BI
is the border irrigation method. EC is the eddy covariance method.
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Figure 9. Spatial and temporal variation of the daily satellite overpass ETa in the three observation
sites in 2018. ETa (mm/day) is the actual daily evapotranspiration. DI is the drip irrigation method.
BI is the border irrigation method. EC is the eddy covariance method.

4.3. Differences in the Growth Stage and Irrigation Methods of ETa

Figure 10 shows a comparison of the ETa estimated by the METRIC model for each
growth stage with the ETa obtained from the other observations. After the expansion of
daily ETa using the Cubic B-Spline method, the sum of each growth stage was determined
and compared with three observations (water balance, Bowen ratio, and EC system, with
light-to-dark border colors). For this petal map, the more uniform the petal lengths of the
same color, the higher the consistency of the four methods of obtaining ETa, and the better
the accuracy of the estimates. In the same year, ETa fluctuated with changes in growth
stages. Using the extended model on the time scale with EC observations as validation
values, the ETa estimates for the different growth stages of maize were accurate, with
the worst Bias occurring during the shooting (yellow bars) period (BiasBI = 15.37 mm,
BiasDI = 7.90 mm). Maize growth during the shooting stage is very fast and cannot be
accurately represented when there are few satellite remote sensing images. Due to the
limited amount of data provided by remote sensing images, estimates can only be obtained
based on the overall trend of rapidly growing maize. This shortcoming can be compensated
for by increasing the temporal resolution of remote sensing data using methods such as
data fusion. The time scale expansion for ETa is only quantitatively represented and cannot
demonstrate the spatial variability at times other than satellite overpass days. Therefore,
further in-depth studies are needed to analyze the spatial variability of ETa at different
growth stages and its relationship with precipitation.



Remote Sens. 2024, 16, 175 17 of 24Remote Sens. 2024, 15, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 10. Histogram of estimated 𝐸𝑇௔  versus three observations for the five growth stages of 
maize (2014–2018) under DI (a) and BI (b). DI is the drip irrigation method. BI is the border irrigation 
method. ΣET is the actual evapotranspiration in each stage of growth of maize. Cal, WB, BREB, and 

Figure 10. Histogram of estimated ETa versus three observations for the five growth stages of maize
(2014–2018) under DI (a) and BI (b). DI is the drip irrigation method. BI is the border irrigation
method. ΣET is the actual evapotranspiration in each stage of growth of maize. Cal, WB, BREB, and
EC (calculation using remote sensing model, water balance, Bowen ratio and energy balance method,
and eddy covariance method) are the methods of actual evapotranspiration.
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The average daily ETa was calculated based on the number of days and time scale
extensions in each growth stage, and then the calculated ETa was compared with the three
observations. The indicators (R2 and RMSE) between the estimated and measured ETa
showed high accuracy for most cases (Figure 11). However, the difference between the
ETa average obtained from remote sensing estimates and the WB data was extensive and
performed poorly in most years. The ETa obtained from the WB method at the seeding
stage was much lower than that obtained from the other observation data, as seen from the
ETa distribution at each growth stage in Figure 10b for 2017. The soil moisture content at
seedling and maturity is low, but the measurement errors are high. Figure 11 shows the
average daily ETa at each growth stage for validation, amplifying the impact of ETa at the
seedling stage, which accounted for a smaller proportion of the total period. Using the
BREB and EC observations for validation, the errors in the remote sensing estimates were
small, with R2 (red and green hollow symbols) greater than 0.7 and RMSE (red and green
solid symbols) less than 0.6 mm/day for both irrigation methods over five years.
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ETa between the two irrigation methods could not be distinguished. The whole crop sea-
son ETa was calculated, and the differences in the total ETa under the two irrigation meth-
ods are shown in Figure 12. The timing of the satellite overpass was irregular for the entire 
maize growing period, owing to clouds. Therefore, this failed to reflect the effect on ETa 
when BI soil evaporation was higher. Combined with the trend of the curves in Figure 7b, 
it was found that the ETa of BI obtained after interpolating the satellite overpass time in 
2015 was always smaller than the ETa of DI in that year. The ETa of BI maize cropland in 
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Figure 11. Accuracy of the estimated daily average evapotranspiration using remote sensing models
under two irrigation methods in different years compared to three observation methods. R2 is the
coefficient of determination. RMSE is the root mean square error (mm/day); DI is the drip irrigation
method. BI is the border irrigation method. WB, BREB, and EC (water balance, Bowen ratio and
energy balance method, and eddy covariance method) are the methods of ETa observation.

The results of the model for estimating water consumption in maize fields were
highly accurate. Therefore, we expected to discriminate field differences between the two
irrigation methods (drip vs. border). However, on satellite overpass days, ETa was related
to the change in surface soil water content caused by irrigation, and the difference in
daily ETa between the two irrigation methods could not be distinguished. The whole crop
season ETa was calculated, and the differences in the total ETa under the two irrigation
methods are shown in Figure 12. The timing of the satellite overpass was irregular for the
entire maize growing period, owing to clouds. Therefore, this failed to reflect the effect
on ETa when BI soil evaporation was higher. Combined with the trend of the curves in
Figure 7b, it was found that the ETa of BI obtained after interpolating the satellite overpass
time in 2015 was always smaller than the ETa of DI in that year. The ETa of BI maize
cropland in other years was higher than DI maize cropland, which was consistent with the
observed data. The differences in ETa under the two irrigation methods obtained using the
three methods observed in 2018 were inconsistent, but their mean values were consistent
with the model estimates (ΣETBI > ΣETDI). It is clear from the above that the remote
sensing evapotranspiration model is a reliable method for estimating ETa when image
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conditions permit it. For example, Semmens et al. [71] used a multi-sensor satellite data
fusion approach combined with a two-source energy balance (TSEB)-based ET algorithm
(Atmosphere–Land Exchange Inverse (ALEXI)) in Sacramento and San Joaquin counties,
California, USA, to produce estimates of daily ETa that were consistent with ground-based
flux measurements for two neighboring Pinot Noir vineyards of different ages (with relative
mean absolute errors in the order of 19–23% and an RMSE of about 1 mm/d).
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Figure 12. Differences in actual total evapotranspiration of maize during the growing season under
the two irrigation methods. DI is the drip irrigation method. BI is the border irrigation method;
ΣET (mm) is the actual evapotranspiration of the growing period of maize. Cal, WB, BREB, and EC
(calculation using a remote sensing model, water balance, Bowen ratio and energy balance method,
and eddy covariance method) are the methods used to obtain actual evapotranspiration.

5. Summary and Conclusions

Previous studies have focused only on the accuracy of the METRIC model to estimate
SEBCs or ETa for one or a few crops in a specific region. However, the reliability of the
METRIC model was verified, and a new direction for its application should be explored.
Therefore, in this study, we hope to use a remote sensing evapotranspiration model to
obtain the regional ETa and further understand whether it can be used to distinguish the
differences in evapotranspiration among different irrigation methods.

This study used Ta obtained from a regression model to estimate Rn, which improved
its accuracy. The estimation accuracy of LE from the METRIC model showed good per-
formance (R2 and RMSE were 0.88 and 42.44 W/m2, respectively), which verified the
applicability of the model in Northwest China. Good results were also obtained in esti-
mating the SEBCs and ETa from farmland at different timescales. The total accuracy of
the ETa estimation on the five-year overpass day of maize farmland reached R2 = 0.93
and RMSE = 0.48 mm. When the anomaly was removed in 2015, the 4-year average ETa
of maize was 31 mm lower for DI than for BI, with the mean value of the three observa-
tions being 40 mm. The model has a high discriminative ability for maize under different
irrigation methods, expanding the application scope of the satellite remote sensing evapo-
transpiration model.

The maize observation sites in this study were similar to most local farmlands and
were managed with high water and fertilizer. The METRIC model was shown to have
the ability to distinguish ETa differences between different irrigation methods and is a
powerful tool for the large-scale demonstration of the changes in and impacts of water-
saving irrigation on conventional irrigation. We also believe that a higher precision ETa
dataset for maize fields is reliable support for the further monitoring of crop growth and
yield. Although the current limitations of the spatial and temporal resolution of satellite
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remote sensing data do not allow for the monitoring of changes in irrigation within plots,
total water use calculations over the maize growth cycle show good results, which is very
beneficial for regional water managers to plan and schedule agricultural water use. This is
a good starting point and evidence for the application of satellite remote sensing technology
to distinguish regional-scale farmland management measures and is expected to be applied
to high-precision farmland management with the support of remote sensing data quality
and quantity.
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Appendix A

Table A1. Definition of variables in the METRIC model.

Symbol Definition Unit/Constant

Cp Air heat constant 1004 J/kg/K
ETdailyi

Evapotranspiration value on the i day mm
ETdaily Ratio of actual to reference evapotranspiration mm
ETinst Instantaneous evapotranspiration mm/h

EToverpass Instantaneous evapotranspiration at overpass time from satellite Mm/h
ETrF Ratio of actual to reference evapotranspiration /

ETr_hourly Instantaneous reference evapotranspiration mm
ETtotal Total water consumption during the growing period mm

GSC Solar constant 1367 W/m2

RL ↑ Outgoing long-wave radiation W/m2

RL ↓ Incoming long-wave incidence W/m2

RS Surface incident short-wave radiation W/m2

Rn Net radiation flux W/m2

Ts Surface temperature K
Ta Near-surface air temperature K
dr Relative Earth–Sun distance /
rah Aerodynamic resistance s/m
εs Surface emissivity /

ρair Air density 1.293 kg/m3

G Soil and water flux heat W/m2

H Sensible heat flux W/m2

LE Latent heat flux W/m2

https://earthengine.google.com/
http://data.cma.cn/
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Table A1. Cont.

Symbol Definition Unit/Constant

N Time interval between sunrise and sunset h

dT Temperature difference between the height Z1 of the ground and
the reference height Z2 of 2 m k

U* Friction velocity m/s
i Number of days in the growing period /
t Satellite overpass time /
z Local altitude m
θ Solar incident angle rad
λ Latent heat of water vaporization J/kg
σ Stefan–Boltzman constant 5.67 × 10−8 W/m2/K4
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