
1. Introduction
Drought causes significant damage to the natural environment and human society by reducing the availability of 
water resources (Buermann et al., 2018; Jiao et al., 2021; Rodell et al., 2018). Numerous studies have documented 
the trends of drought under climate change (Dai, 2013; Samaniego et al., 2018; Williams et al., 2020), whereas 
few studies have paid attention on the vegetation overgrowth to a favorable environment, which will exacerbate 
the impacts of drought on dryland ecosystems (Lian et al., 2021). A complex relationship exists between climate 
systems and ecosystems. The state of ecosystems is influenced not only by the concurrent climate status but also 
by the preceding climate conditions (Bastos et al., 2020; Wolf et al., 2016). In boreal ecosystems, warmer springs 
can drive an earlier onset of the growing season (Piao et al., 2015), which may enhance evapotranspiration (ET) 
(Kang et al., 2006), resulting in further depletion of soil moisture (SM) and triggering of seasonal SM deficit 
(Buermann et al., 2013; Lian et al., 2020), eventually leading to negative lagged effects on ecosystem functions 
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in the summer or even autumn (Buermann et  al.,  2018; Richardson et  al.,  2010). This phenomenon, defined 
as structural overshoot, often occurs in regions with extensive forest cover (S. Wang et al., 2020). It can elicit 
more severe threats to grasslands and agricultural lands because their relatively shallow roots prevent them from 
accessing deep SM (Bastos et al., 2020).

Several studies documented drought related to structural overshoot. Such as the unusual drought and heat stricken 
central and northern Europe in the summer 2018, which was detected by Bastos et al. (2020) as the legacy of 
water deficit dominance, which extremely amplified drought impacts on crop harvests and carbon fluxes. Simi-
larly, Wolf et al. (2016) documented water limitations due to the warmer spring induced biological atmospheric 
feedback in America 2012 summer drought, however, earlier vegetative activity to some extent compensated for 
carbon storage decline during the summer drought. An implication could be drawn from Jiao et al. (2022) that 
lagged drought may have more significant effects compared to simultaneous drought. Compared to cumulative 
atmospheric deficit effects on vegetation productivity (Z. Zhang et al., 2022), the legacy negative SM limitation 
induced by vegetative growth would be more informative for comprehending the mechanisms and effects of over-
shoot (Goulden & Bales, 2019), especially in water-limited drylands. In addition, some of the recent studies mainly 
focused on the vegetation phenology in the background of changing seasonal characteristics and legacy effects 
of previous droughts, and addressed the legacy negative effects on vegetation growth caused by an earlier start 
of spring phenology (Mei et al., 2021; Zeng et al., 2021). However, due to the complex time-varying interactions 
between vegetation, climate and human activities, there is an incomplete understanding of structural overshoot 
induced drought, which hinders the development of adaptive strategies to cope with the anticipated intensification 
of drought frequency, duration, and severity (Jump et al., 2017). Climate change regulates vegetation phenology 
and alters ecosystem functions (Piao et al., 2015; L. Wang, 2023; C. Wu et al., 2022), which in turn affects the 
environment through vegetation biogeochemical and biophysical processes (Peñuelas et al., 2009). Therefore, a 
comprehensive assessment of the interaction mechanisms between vegetation dynamics and drought evolution is 
conducive to our understanding of regional water and carbon cycles, as well as ecosystem responses and feedback 
to climate change (Y. Liu et al., 2022).

Structural overshoot has already been detected in forest ecosystems, revealing one of the reasons for previous 
sharp declines in the forest (Jump et al., 2017). Incorporating in-site and remote sensing observations, Goulden 
and Bales  (2019) explored the mechanisms of marked tree mortality in California's 2012–2015 drought, and 
illuminated the links between tree die-off and cumulative deep-soil drying. Furthermore, Y. Zhang et al. (2021) 
quantified the spatial patterns and impacts of structural overshoot at a global scale, and further defined its concept 
as vegetation overgrowth induced by prior favorable climatic conditions that could temporarily exceed the carry-
ing capacity of the ecosystem, potentially depleting SM resources in the process. Negative lagged effects caused 
by structural overshoot may increase the risk of future droughts, as well as amplify the impact of climate change 
(Goulden & Bales, 2019). However, in the study conducted by Y. Zhang et al. (2021), radiation was not consid-
ered as the major influencing factor that plays an important role in the growth of vegetation in drylands (H. Wang 
et al., 2022), and there is a lack of studies on the structural overshoot in water-limited drylands, which occupy 
over 40% area of the global land (L. Wang et al., 2022). Given the significant regional discrepancies in spatiotem-
poral characteristics, the response and feedback mechanisms of vegetation to climate vary considerably at differ-
ent timescales across regions. Therefore, it is essential to conduct an in-depth investigation of the relationship 
between regional vegetation dynamics and drought evolution, especially the contribution of structural overshoot 
to subsequent drought events and its impacts on dryland ecosystems.

The typical arid inland region of Northwest China (NWC) is located in the mid-latitudes of Eurasia. With 
scarce water resources year-round, NWC is one of the most vulnerable regions to global climate change (Chen 
et al., 2015). As an important ecological security barrier in arid regions, vegetation plays a crucial role in wind 
and sand control in NWC (Cao et  al.,  2021). Vegetation in NWC has experienced significant upward trends 
owing to the modulations caused by the climate transition from warm-dry to warm-wet (Jiapaer et al., 2015; Q. 
Zhang et al., 2021), which concurs with mass water consumption. The climate is projected to continue warming 
and humidification in NWC (Q. Zhang et al., 2022), creating an ideal environment for vegetation to flourish. 
However, enhanced vegetation growth or an earlier start of the growing season could exacerbate the risk of 
structural overshoot, intensify water scarcity, and eventually leave profound negative legacy effects on vegetation 
growth in the subsequent growing season (Zeng et al., 2021). This series of events caused by climate change and 
increasing human activities could be detrimental to the development of ecosystem service functions in NWC (Lai 
et al., 2022; Sun et al., 2006; Wei et al., 2022; Zeng et al., 2021). Much of the existing research has focused on 
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the response of vegetation to climate change (Cao et al., 2021, 2022; Chen et al., 2015, 2020; Z. Du et al., 2017; 
Jiapaer et al., 2015; Mo et al., 2019); however, less attention has been devoted to vegetation feedback owing to the 
complexity of dynamic vegetation-climate interactions. Thus, as a climate change hotspot, effective identification 
of the structural overshoot in the context of warming and humidification in NWC has become essential for allevi-
ating the contradiction between water supply and demand. In particular, it is of great significance for maintaining 
optimal ecosystem service functions both in China and globally.

In this study, a Bayesian Dynamic Linear Model (DLM) (West & Harrison, 2006), including a sensitivity coeffi-
cient that can vary over time to capture non-linear vegetation variations, is proposed to identify overshoot induced 
drought. The analyses are based on the combination of the Standardized Precipitation Evapotranspiration Index 
(SPEI) and Normalized Difference Vegetation Index (NDVI), which represent drought conditions and vegetation 
greenness (Y. Zhang et al., 2021), respectively. The main objectives of this study were to (a) quantify drought 
events triggered by structural overshoot, (b) examine the potential driving mechanisms of the structural overshoot 
phenomenon, and (c) characterize the impacts of overshoot induced droughts in NWC. Our findings are expected 
to provide the practical foundation for formulating effective land management strategies and promoting long-term 
regional ecosystem sustainability.

2. Materials and Methods
2.1. Study Area

Northwest China (73°46′–111°25′E, 31°58′–49°19′N) includes the provinces of Qinghai, Gansu, and Shanxi, 
as well as the Xinjiang Uygur Autonomous Region, the Ningxia Hui Autonomous Region, and the western part 
of Inner Mongolia (Figure 1). The complex mountainous terrain hinders the transportation of moist air from the 
ocean, forming a primary temperate continental climate, with precipitation gradually decreasing from southeast 
to northwest. In most areas of NWC, the annual mean precipitation is below 400 mm, with less than 100 mm in 
southern Xinjiang. Apart from that, southern Shanxi, exceeds 400 mm, with certain areas experiencing precip-
itation of up to 800 mm per year (Figure S1c in Supporting Information S1). As a result of global warming, the 
climate pattern in NWC has recently shifted from warm-dry to warm-wet, and precipitation has been noticeably 
increasing (Jiapaer et  al., 2015). This pattern, together with the abundance of sunshine duration, provides an 
ideal condition for vegetation growth. A variety of vegetation and soil types can be observed in this region, 
with grassland and desert being the two predominant types of land cover (Figure  1). Human activities have 

Figure 1. The spatial distribution of land cover types in Northwest China in the year 2015. Note: The land cover data were 
derived from http://www.resdc.cn, https://doi.org/10.12078/2018070201. A detailed demonstration of the spatial distribution 
of NDVI, air temperature, precipitation, and downward longwave radiation (DLR) averaged across 1982–2015 can be seen in 
Figure S1 of the Supporting Information S1.
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significantly increased the irrigated land in Xinjiang and the Hexi Corridor, and large-scale ecological restoration 
initiatives, such as the “Grain for Green Project” on the Loess Plateau and the “Three-North Shelter Forestation 
Project” in Inner Mongolia, have also stimulated the vegetation in these areas to experience a remarkable green-
ing trend. Overall, this series of changes emphasizes the urgency and importance of examining the structural 
overshoot of vegetation in NWC.

2.2. Data Sets

2.2.1. Vegetation Index

NDVI is a widely used proxy for monitoring and quantifying changes in vegetation growth and can reflect vege-
tation biomass and phenology (Tucker et al., 1986). The third-generation NDVI (NDVI3g) data set released by 
the Global Inventor Modeling and Mapping Studies Project (GIMMS) of the National Aeronautics and Space 
Administration (NASA) (Pinzon & Tucker, 2014) was used in this study. The GIMMS NDVI3g data products 
comprised a global data set with a spatial resolution of 1/12° (8 km at the equator) and a temporal resolution of 
15-day intervals, with the longest time series available from July 1981 to December 2015. This data set has been 
verified to have the best temporal consistency (Marshall et al., 2016) and has been extensively used in China 
(Liang & Yang, 2016; Tao et al., 2017; H. Wang et al., 2022; H. J. Xu et al., 2018). Data from 1982 to 2015 
were extracted in this study, and to further reduce the impact of clouds and haze, monthly values were integrated 
using the Maximum Value Composite (MVC) technique (Holben, 1986). Meanwhile, to exclude the effects of 
non-vegetation areas, areas with a mean NDVI value of less than 0.1 were omitted (Jamali et al., 2014).

We added data sets of kernel NDVI (kNDVI) and Solar-induced Chlorophyll Fluorescence (SIF) to evaluate the 
results obtained by NDVI (Jeong et al., 2017; W. Li et al., 2022). kNDVI proposed by Camps-Valls et al. (2021) 
has the advantage of improving the optical signal saturation impacts of NDVI. SIF provides a more rapid and 
precise method to evaluate the status of vegetation based on the light signal generated by vegetation photosyn-
thesis (Sun et al., 2023) and serves as an effective proxy for GPP (Yang et al., 2015). A global contiguous SIF 
(CSIF) (Y. Zhang et al., 2018) all-sky daily average data set that has high spatiotemporal resolutions and reliabil-
ity generated using neural networks was used from 2001 to 2015.

2.2.2. Climate Data

Climate data were obtained from the China Meteorological Forcing Dataset (CMFD) (He et  al.,  2020). The 
CMFD is a reanalysis data product that combines information from traditional meteorological stations, radar, and 
remote sensing, spanning the years 1979–2018 with a temporal resolution of 3 hr and a spatial resolution of 0.1°. 
The reliability and applicability of the CMFD data set have been extensively investigated (B. L. Xue et al., 2013; 
Yang et al., 2021) and compared with in situ observations in arid and semi-arid regions (Chen et al., 2011). The 
mean air temperature, precipitation, downward longwave radiation (DLR), and specific humidity were chosen 
from the seven meteorological factors provided in the CMFD data set (Nemani et al., 2003; Rishmawi et al., 2016; 
Tao et al., 2017; D. Wu et al., 2015).

Additionally, vapor pressure deficit (VPD) was extracted from the data set of the TerraClimate (Abatzoglou 
et al., 2018), spanning from 1982 to 2015 with monthly temporal resolution and a 1/24° spatial resolution.

2.2.3. Soil Moisture Data

ERA5 is the fifth-generation global climate reanalysis data set released by the European Center for Medium-Range 
Weather Forecasts (ECMWF). The ERA5-Land data set was generated by replaying the land surface component 
of ERA5 and had higher spatiotemporal resolutions (Hersbach et al., 2020). With 0.1° × 0.1° grid spacing and 
hourly temporal resolution from 1950 to the present, ERA5-Land contains detailed records of SM content for four 
soil layers (0–7, 7–28, 28–100, and 100–289 cm). Given that the 0–100 cm soil depth accounts for the majority of 
vegetation roots (A. Wang & Kong, 2021), the values in the top three soil layers were extracted in this study, and 
monthly SM data were generated by weighted interpolation. Based on this, the Soil Water Deficit Index (SWDI) 
(Martínez-Fernández et al., 2015) was calculated to serve as a foundation for the Random Forest (RF) model to 
investigate the underlying mechanisms of structural overshoot.

2.2.4. Climatological Drought Index

SPEI (Vicente-Serrano et  al.,  2010) characterizes the long-term water balance by calculating the difference 
between precipitation and potential evapotranspiration, which has been widely used to evaluate drought conditions 
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(Cao et al., 2021; C. Wu et al., 2022; H. J. Xu et al., 2018). The monthly SPEI data products employed in this 
study at different timescales ranging from 1 to 48 months were calculated based on the Climatic Research Unit 
(CRU) meteorological data, with a spatial resolution of 0.5°. Considering that vegetation productivity responds 
significantly to the 3-month timescale of the SPEI (SPEI-3) in arid regions (Zhao et al., 2018), the SPEI-3 data 
set was used in this study to reflect seasonal moisture deficits.

To ensure consistent spatial resolution across different data sets, all variables were interpolated to grid cells with 
a resolution of 0.5° × 0.5° using the bilinear interpolation algorithm.

2.3. Methods

2.3.1. Trend Analysis

The least-squares linear regression model was used to investigate the trends in NDVI, meteorological factors (i.e., 
temperature, precipitation, and DLR), and SM at the pixel scale from 1982 to 2015 using the following equation 
(Jiapaer et al., 2015; Zheng et al., 2021):

Slope =
𝑛𝑛
∑𝑛𝑛

𝑖𝑖=1
(𝑖𝑖 × 𝑥𝑥𝑖𝑖) −

∑𝑛𝑛

𝑖𝑖=1
𝑖𝑖
∑𝑛𝑛

𝑖𝑖=1
𝑥𝑥𝑖𝑖

𝑛𝑛
∑𝑛𝑛

𝑖𝑖=1
𝑖𝑖2 −

(
∑𝑛𝑛

𝑖𝑖=1
𝑖𝑖

)2 (1)

where Slope represents a linear trend, n is the number of time series (n = 34), and xi is the value of each factor in 
the year i. Slope > 0 indicates a positive trend and Slope < 0 indicates a negative trend of the variable over time. 
The t-test was used at a significance level of 0.05.

2.3.2. Correlation Analysis

The Pearson correlation coefficient was used to examine the response of NDVI to each meteorological factor 
(i.e., temperature, precipitation, and DLR) and its correlation with SM, based on the following formula (Mo 
et al., 2019; Wei et al., 2022):

𝑟𝑟𝑥𝑥𝑥𝑥 =

∑𝑛𝑛

𝑖𝑖=1

(

𝑥𝑥𝑖𝑖 − 𝑥𝑥

)(

𝑥𝑥𝑖𝑖 − 𝑥𝑥

)

√

∑𝑛𝑛

𝑖𝑖=1

(

𝑥𝑥𝑖𝑖 − 𝑥𝑥

)2 ∑𝑛𝑛

𝑖𝑖=1

(

𝑥𝑥𝑖𝑖 − 𝑥𝑥

)2
 (2)

where rxy is the correlation coefficient between NDVI and other variables, n is the number of time series (n = 34), 
xi is the value of NDVI in the year i, yi is the value of each meteorological factor or SM in the year i, and 𝐴𝐴 𝑥𝑥 and 𝐴𝐴 𝑦𝑦 
are the mean values of x and y, respectively. rxy > 0 indicates a positive correlation and rxy < 0 indicates a negative 
correlation between NDVI and each other variable. A larger absolute value of rxy indicates a stronger correlation 
between the two variables. The t-test was used at a significance level of 0.05.

2.3.3. Bayesian Dynamic Linear Model

The Bayesian DLM (West & Harrison, 2006) is a linear model for time-series analysis, and because of its varied 
regression coefficients over time, it is possible to effectively capture the connection of vegetation conditions 
at different timescales. In this study, the model was developed based on Y. Zhang et  al.  (2021) and Y. Liu 
et  al.  (2019), which focused on the lagged effects of previous vegetation anomalies and concurrent climate 
anomalies. The DLM is composed of an observation equation (Equation  3) and a state evolution equation 
(Equation 4):

�� = ��
� θ� + �� (3)

θ𝑡𝑡 = 𝐆𝐆θ𝑡𝑡−1 + 𝐰𝐰𝑡𝑡 (4)

where yt is the value of NDVI observation at each time t, which is decomposed by the model into three compo-
nents: the local mean and trend component (subscript l), the seasonal component (subscript s), and the regression 
component (subscript r). The regression vector (Ft), the state vector (θt, i.e., the sensitivity coefficient of DLM), 
and the state evolution matrix (G) are also composed of the three corresponding components. vt is the observation 
noise at the time t, following a Gaussian distribution with a zero mean; and wt is the state evolution noise at the 
time t, following a Gaussian distribution with a zero mean, which is independent of vt.
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 (3)  The regression component consists of:

𝐅𝐅𝑟𝑟𝑟𝑟𝑟 =
[

𝑥𝑥1𝑟𝑟𝑟𝑟 𝑥𝑥2𝑟𝑟𝑟𝑟 . . . 𝑟 𝑥𝑥𝑝𝑝𝑟𝑟𝑟

]𝑇𝑇

𝑟 θ𝑟𝑟𝑟𝑟𝑟 =
[

𝜃𝜃𝑟𝑟𝑟1𝑟𝑟𝑟𝑟 𝜃𝜃𝑟𝑟𝑟2𝑟𝑟𝑟𝑟 . . . 𝑟 𝜃𝜃𝑟𝑟𝑟𝑝𝑝𝑟𝑟𝑟

]𝑇𝑇

𝑟𝐆𝐆𝑟𝑟 = 𝐈𝐈𝑝𝑝 

where Ip is the identity matrix with a dimension of p. In the regression components of Fr,t, each variable represents 
concurrent temperature anomalies (δTempt), precipitation anomalies from concurrent and previous 2  months 
(δPrect,t−2), concurrent radiation anomalies (δDLRt), NDVI anomalies with 1 month lag (δNDVIt−1), NDVI anom-
alies with a 2–3 months lag (δNDVIt−2,t−3), NDVI anomalies with a 4–6 months lag (δNDVIt−4,t−6), NDVI anom-
alies with a 7–12 months lag (δNDVIt−7,t−12), and NDVI anomalies with a 13–24 months lag (δNDVIt−13,t−24). 
The mean value between the starting and ending months was calculated based on the subscripts of each variable. 
NDVI with 1 month lag (lag 1) was considered as a direct effect in this study owing to its significant autocorre-
lation and is often considered as an indicator of intrinsic vegetation memory or used to indicate the vegetation 
recovery rate (Kusch et al., 2022). Similarly, θr,t also consists of the coefficient corresponding to Fr,t that repre-
sents the influence of previous NDVI components or climate factors.

At each time t, starting with the provided non-informative priors of θ0 and noises, the posterior distribution of θt 
is estimated using a forward filtering approach. In addition, to obtain a more reliable prediction of the coefficient, 
the first 5 years (1982–1987) of both satellite-observed NDVI and precipitation (10 years in total) were recycled 
twice before the start of the prediction.

2.3.4. Identification of Droughts and Overshoot Droughts

In this study, both SPEI and NDVI were utilized to characterize drought. Figure 2 shows the identification of 
overshoot induced drought during 2002–2003 and serves as an example of the theory, procedure, and results of 
the DLM approach. First, NDVI anomalies (Figure 2b) were obtained from the long-term NDVI observations 
(Figure 2a). The DLM decomposed the NDVI time series into three separate components: a local mean and 
trend component, three seasonal components, and a deseasonalized detrended regression component (Figure 2c). 
Second, the possible drought period was defined as the beginning when the deseasonalized detrended NDVI 
anomaly turned negative and terminated when the deseasonalized detrended NDVI anomaly was more than 70% 

 23284277, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

F003977 by C
hina A

gricultural U
niversity, W

iley O
nline L

ibrary on [04/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Earth’s Future

ZHANG ET AL.

10.1029/2023EF003977

7 of 20

of its minimum value. On this basis, a drought event (as shown in Figure 2d) was recognized when the following 
three criteria were met: (a) the drought period lasts at least 2 months and the minimum deseasonalized detrended 
NDVI anomaly should be less than 10% of its mean value to exclude the effect of random noise in NDVI; (b) the 
mean SPEI during the corresponding period is less than −0.5; (c) the absolute value of the temperature compo-
nent should be smaller than that of the precipitation component during the drought period, or the temperature 
sensitivity coefficient should be negative, to exclude the disturbance of NDVI declines due to low temperature 
instead of low SM.

Based on the identification results of drought events, four different lagged timescales of NDVI were assessed to identify 
droughts triggered by structural overshoot (i.e., overshoot droughts): a 2–3 months lag (lag 2–3, i.e., sub-seasonal), 
4–6 months lag (lag 4–6, i.e., seasonal), 7–12 months lag (lag 7–12, i.e., intra-annual), and 13–24 months lag  

Figure 2. An example of overshoot drought identified using the DLM in NWC (103.96°E, 35.96°N). (a) NDVI time series 
from satellite observations (black), and DLM predictions (red) from 1982 to 2015. (b) NDVI anomalies (NDVI values 
minus multi-year averages). (c) Deseasonalized detrended NDVI (the black line indicates NDVI anomalies minus trend and 
seasonal components, and the red line indicates DLM predictions, calculated by summing the components of precipitation, 
temperature, DLR, and all lagged NDVI). (d) Flowchart of overshoot drought identification. Starting with the possible 
drought period, three criteria are examined to confirm the drought event, following which overshoot drought is identified. The 
blue-shaded and orange-shaded areas both represent the confirmed drought period; however, only the orange-shaded area is 
eventually identified as an overshoot drought period and is used for further explanation, with hatches indicating the overshoot 
components. The blue dashed lines represent the sensitivity coefficient corresponding to each variable (right axis).
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(lag 13–24, i.e., inter-annual). The average lagged NDVI anomalies (𝐴𝐴 𝐅𝐅𝑟𝑟𝑟𝑟𝑟 = [𝑥𝑥2−3𝑟 𝑥𝑥4−6𝑟 𝑥𝑥7−12𝑟 𝑥𝑥13−24]
𝑇𝑇 ) and corre-

sponding DLM sensitivities (θr,i) were first calculated. For each timescale, if xi > 0 and θr,i < 0 (i ∈ {2–3, 4–6, 
7–12, 13–24}), which means the lagged NDVI contributed to the concurrent prediction contrii = xi ∗ θr,i < 0, then 
this contrii was regarded as an overshoot component (overshoot_ contri), whereas the remaining components were 
seen as non-overshoot components (non-overshoot_contri). For each drought event, if Equation 6 is satisfied,

|sum(overshoot_contri)| > |sum(non-overshoot_contri)| (6)

which indicates that there was a structural overshoot brought on by the previous excessive NDVI increase, which 
harms concurrent vegetation dynamics. Consequently, this drought event was identified as an overshoot drought 
event (Figure 2d). Besides, the SM time-series before and during the overshoot drought event was shown to 
demonstrate the mechanism of structural overshoot (see Figure S2 in Supporting Information S1 for details).

When there was more than one overshoot component, we further defined an overshoot drought event caused by 
the timescale at which the overshoot component with the greatest negative contribution is located (as shown in 
Figure 2d, the overshoot drought observed in 2002–2003 was caused by the inter-annual timescale (lag 13–24) 
because the negative contribution of the overshoot component in the previous 13–24 months was greater than that 
in the previous 4–6 months). In addition, the effects of overshoot drought on vegetation were characterized using 
deseasonalized detrended NDVI anomalies.

2.3.5. Random Forest Model

RF is a machine learning algorithm introduced by Breiman (2001), which has been widely used in various scien-
tific fields such as geography and remote sensing (Belgiu & Drăguţ, 2016; Shruthi et al., 2014). RF consists of 
multiple decision trees with the same distribution, which are independently based on the values of bootstrapped 
samples. After selecting random features for each node, the nodes are split, and the prediction results are deter-
mined by a plurality vote of the tree predictors. The classification model used in this study consisted of 400 trees, 
with a minimum sample size of eight for node split and leaf node samples no smaller than three. The model was 
developed using 70% of the entire data set and included six possible factors (temperature, precipitation, DLR, 
NDVI, SPEI, and SWDI) to predict whether an overshoot drought event had occurred. Thereafter, the internal 
out-of-bag error estimation was calculated using approximately one-third portion of the data that was randomly 
excluded from the constructed 400 classification trees (Lawrence et al., 2006). Moreover, to adequately validate 
the performance of our model, a confusion matrix was used to calculate the overall accuracy of the predictions 
using test data set that was previously withheld (30% of the entire data set). With the optimal fitted model, the 
variable importance (VI) was estimated as a decrease in the Gini coefficient of node splitting. Higher VI values 
indicated that the variable was more important.

The partial dependence plot (PDP) (Friedman, 2001) reflects the average marginal effect of each independent 
variable on the prediction target by fixing the value of the variable of interest and computing the average values 
of prediction obtained by changing other features using the following equation:

𝑓𝑓𝑠𝑠(𝑥𝑥𝑠𝑠) =
1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

𝑓𝑓

(

𝑥𝑥𝑠𝑠, 𝑥𝑥
(𝑖𝑖)

𝑐𝑐

)

 (7)

where 𝐴𝐴 𝑓𝑓𝑠𝑠 is the partial dependence function corresponds to the interested variable xs, xc is the vector comprised 
of the other variables used in the RF model, with the superscript “(i)” representing one instance in the data set, 
and n is the number of incidents.

3. Results
3.1. Spatiotemporal Variations of Climate Factors and Vegetation

During 1982–2015, 80% of the vegetated areas in NWC exhibited a significantly increasing trend in temperature 
(Figure 3a), with a small fluctuation along latitude (Figure 3g). Meanwhile, the percentage of increase and the 
remarkable increase in precipitation of vegetated areas was 89.1% and 48.6%, respectively, whereas only 10.9% 
of the vegetated areas exhibited a slight downward trend, mostly distributed in southern Gansu and southeastern 
Shaanxi (Figure 3b). Furthermore, approximately 70.9% of the pixels showed a significantly increasing trend in 
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DLR; in comparison, only a small proportion (29.1%) exhibited a slightly decreasing trend, mostly appearing in 
Xinjiang, Gansu, and Shaanxi (Figure 3c). Similar to precipitation (Figure 3f), higher latitudes showed larger 
variations in DLR (Figure 3g). Overall, the three climate factors investigated in this study showed a consistently 
increasing trend from 1982 to 2015, providing ideal conditions for vegetation growth, which also corresponds to 
the conditions for the occurrence of structural overshoot.

Despite the context of such warm-wet climatic patterns, a negative trend was detected in 62.1% of the vegetated 
areas in SM. Furthermore, 32.5% of the vegetated areas experienced a significantly decreasing trend in SM, 
mostly centered in northern and central Xinjiang, southeastern Gansu, and most of Shaanxi (Figure 3d). However, 
most of the vegetated areas (75.9%) showed an increasing NDVI trend, of which up to 54.0% demonstrated a 
significantly positive trend. A rapid increase in NDVI was mainly concentrated in southern Gansu, as well as in 
northern and southern Shaanxi. In contrast, the areas where NDVI declined were much smaller (24.1%), primar-
ily located near the Junggar Basin in Xinjiang, southern Qinghai, and the Hexi Corridor (Figure 3e), which is 
consistent with a recent study (Chen et al., 2020). It is worth noting that the areas with decreasing SM were 

Figure 3. Spatial distributions of linear trends in (a) annual mean temperature, (b) annual precipitation, (c) annual mean DLR, (d) annual mean SM, and (e) annual 
mean NDVI, and the mean linear trends along the same latitude in (f) Prec–precipitation, (g) DLR and Temp–temperature, and (h) NDVI and SM. Shaded areas 
represent the maximum to minimum values at the same latitude. Black dots indicate statistically significant trends (p < 0.05).
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associated with increased precipitation and increased NDVI, suggesting that the decline in SM was not only 
driven by meteorological factors but also triggered by vegetation greening. Therefore, it is necessary to investi-
gate the structural overshoot of vegetation in NWC.

To identify droughts due to vegetation overgrowth (i.e., overshoot droughts) and distinguish them from meteoro-
logical droughts, correlations between NDVI and each climate factor were calculated independently (Figure S3 in 
Supporting Information S1). As expected, the majority of vegetated areas exhibited positive correlations between 
NDVI and temperature (Figure S3a in Supporting Information S1), precipitation (Figure S3b in Supporting Infor-
mation S1), and DLR (Figure S3c in Supporting Information S1), with percentages of 79.4%, 70.1%, and 79.2%, 
respectively, whereas negative correlations were only present in a small portion of the vegetated areas. In particu-
lar, vegetation showed a greater correlation with temperature, with a statistically significant positive correlation 
in 40.0% of the pixels. Moreover, 36.8% of the vegetated areas exhibited a negative relationship between NDVI 
and SM, and approximately 10.4% showed a significantly negative correlation, which was mainly distributed in 
southeastern Gansu, most of Shaanxi, and the Tarim River basin in Xinjiang (Figure S3d in Supporting Informa-
tion S1). However, the NDVI in these areas exhibited a significantly upward tendency (Figure 3e), emphasizing 
that rapid vegetation growth may accelerate SM reduction. It is projected that the mode of warming and precip-
itation increase, combined with sufficient solar radiation duration, may allow vegetation to grow rapidly, which 
will excessively deplete SM, ultimately resulting in a shortage of water accessibility for subsequent vegetation 
growth, that is, the adverse lagged effect. Therefore, three meteorological factors (temperature, precipitation, and 
radiation (represented by DLR)) were excluded in the subsequent construction of the DLM to separate the effects 
of climate factors from NDVI and further detect overshoot droughts.

3.2. Identification of Droughts and Overshoot Droughts

Based on the outputs from the constructed DLM and the identification algorithm, we quantified the number 
and impacts of droughts and overshoot droughts in NWC from 1982 to 2015. Droughts and overshoot droughts 
displayed similar spatial distribution patterns (Figures 4a and 4b), approximately 34.6% of the drought events 
were triggered by structural overshoot. By calculating the summation of the deseasonalized detrended NDVI 
anomalies during drought or overshoot drought periods, and four lagged NDVI components, the impacts of 
droughts, overshoot droughts, and lagged components on vegetation conditions were further evaluated. The results 
showed overshoot droughts contributed to approximately 34.0% of the drought-induced NDVI declines, among 
which the lagged effects accounted for 16.7% of the vegetation degradation for these overshoot drought events. 
The regions with a higher occurrence probability of overshoot droughts were generally distributed in the Tarim 
River Basin, the Hexi Corridor, and the Loess Plateau (Figure 4b), with relatively greater impacts (Figure 4d). 
Overshoot droughts also occurred frequently in the Junggar Basin in northern Xinjiang but their impacts were 
less pronounced owing to the sparser vegetation cover and negative vegetation growth trend. A slight peak in the 
occurrence probability of overshoot droughts can be seen in the mid-latitudes of NWC (Figure 4g), and higher 
latitudes generally show more severe effects (Figure 4f). Furthermore, both droughts and overshoot droughts 
exhibited highly consistent temporal patterns, showing linear upward trends with increasing rates of 3,600 and 
700 km 2 a −1 from 1982 to 2015, respectively, which indicates that the intensified structural overshoot has aggra-
vated drought impacts on the ecosystems in NWC.

To investigate the timescales at which the vegetation component contributed the most to the occurrence of 
overshoot droughts, four lagged timescales (i.e., sub-seasonal, seasonal, intra-annual, and inter-annual) were 
assessed, as depicted in Figure 5. The contribution of vegetation components to the number and impact of over-
shoot droughts at different lagged timescales exhibited a similar spatial distribution pattern. The sub-seasonal 
timescale showed the largest area distribution with percentages of 55.5% (Figure 5a) and 43.6% (Figure 5b) for 
the number and impact of overshoot droughts, respectively. Similarly, compared with other lagged vegetation 
components, the contribution of sub-seasonal vegetation components exhibited a larger proportion of overshoot 
droughts (43.7%) and impacts (44.5%). However, at the intra-annual timescale, the impact of vegetation over-
shoot was negligible. Additionally, there was a high agreement between the seasonal (25.1%) and inter-annual 
(25.0%) timescales in the number fraction of overshoot droughts (Figure 5a), whereas overshoot droughts induced 
by the seasonal timescale vegetation overgrowth resulted in greater NDVI declines, with a percentage of 30.1% 
compared to 22.4% (Figure 5b). Overall, NDVI lagged effects at both the sub-seasonal and seasonal timescales 
contributed the most to the structural overshoot droughts in NWC, implying that an earlier onset of vegetation 
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phenology driven by global warming may increase vegetation productivity in spring, which leads to greater water 
consumption through enhancing ET. However, the rising water limitation may ultimately result in adverse lagged 
effects on vegetation conditions in summer or even autumn (Jin et al., 2020), thus triggering overshoot drought 
(see Figure S4 in Supporting Information S1 for details).

3.3. Driving Factors of Structural Overshoot Drought

To further investigate the discrepancies in driving mechanisms between the contributions of meteorological 
conditions and human activities, SPEI and SWDI, representing meteorological and agricultural drought, were 
added to the four variables of temperature, precipitation, DLR, and NDVI in the RF model construction, 
to predict which factors contributed to the occurrence of overshoot drought. Using withheld and out-of-bag 
data, the resulting RF model can achieve an accuracy score (i.e., the proportion of correctly classified pixels) 

Figure 4. Spatial distributions of number and impacts of droughts and overshoot droughts. (a) The number of droughts. (b) The number of overshoot droughts. (c) 
Drought-induced NDVI declines. (d) NDVI declines caused by overshoot droughts. (e) NDVI declines caused by lagged vegetation effects. (f) The mean values of the 
impacts of droughts, overshoot droughts, and lagged vegetation at the same latitude. (g) The mean number of droughts and overshoot droughts at the same latitude. 
Shaded regions indicate the maximum to minimum values at the same latitude. The insets represent the inter-annual variations of the area of droughts and overshoot 
droughts from 1982 to 2015.
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of 64.3% and 65.5%, respectively, which adequately proves the validity of the RF model (Congalton, 1991). 
Based on the fitted RF model, the rank of VI and partial dependence of the target variable on each factor were 
derived.

The overshoot drought generally exhibited a non-linear response relationship with each independent driving 
factor. In NWC, NDVI was the primary factor causing overshoot droughts, with a VI of 0.20 (Figure 6a), and as 
vegetation increases, the occurrence probability of overshoot droughts increases significantly (Figure 6e). These 
findings are in line with our definition of structural overshoot, which states that strong vegetation growth driven 
by a favorable environment may consume water resources excessively and thus induce overshoot droughts later. 
Additionally, precipitation was more likely to trigger overshoot drought than temperature and DLR, with a VI of 
0.19 (Figure 6a). This is probably attributed to the fact that the SM under arid climate is mostly low, and vegetation 
species in arid regions tend to respond rapidly to the changing water availability (Vicente-Serrano et al., 2013). In 
other words, a small amount of short-term precipitation could immediately meet the water demand of vegetation, 
leading it to temporarily surpass the carrying capacity of the ecosystem and increasing the occurrence probability 
of overshoot droughts (Figure 6b). However, an obvious turning point can be observed as precipitation reached 
nearly 50 mm. After this stage, the frequency of the occurrence of overshoot droughts decreased significantly 

Figure 5. Overshoot droughts caused by the vegetation components at different timescales in which the maximum number 
(a) and impact (b) are located. The upper right pie charts indicate the proportion of pixels, and the bottom bar charts indicate 
the percentage of the contributions of lagged vegetation components at different timescales in terms of number and impact, 
respectively. Sub-seasonal, seasonal, intra-annual, and inter-annual correspond to lag 2–3, lag 4–6, lag 7–12, and lag 13–24, 
respectively.

Figure 6. The rank of the variable importance (a), and the partial dependence plot corresponding to each independent variable, including Prec–precipitation (b), Temp–
temperature (c), DLR (d), NDVI (e), SPEI (f), and SWDI (g). The dark blue lines indicate the average effects, and the light blue lines around them indicate 30 random 
incidents from the data sets.
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at first and stabilized with the increase in precipitation after approximately 100 mm (Figure 6b), whereas the 
probability of precipitation exceeding 100 mm was relatively low in NWC, especially during drought periods.

Furthermore, the SPEI contributed to overshoot droughts more frequently than the SWDI, indicating that vegeta-
tion dynamics were responsive not only to irrigation-induced SM variations, but also to atmospheric water vapor 
conditions in drylands. This may be because the ecosystems of NWC are dominated by natural grasslands and 
woodlands, which are more susceptible to climate change (Cao et al., 2022). This study also investigated and 
analyzed the impact of irrigation on structural overshoot, as detailed in Section 4.2.

4. Discussion
4.1. Implications From Impacts of Overshoot and Non-Overshoot Droughts

As existing studies revealed that the Tarim River Basin in Xinjiang experienced persistent large-scale agricultural 
expansion from 1990 to 2015, with a significant increase in irrigated farmland (Fu, Wang, et al., 2022), which was 
largely driven by global warming, boosting recharging from snow and glacier retreats as well as increasing human 
irrigation efficiency (Fu, Wang, et al., 2022). Similarly, the Hexi Corridor, a prominent grain-producing region 
in China, saw an increase of approximately 14.3% in arable land area from 2000 to 2020 (Yang et al., 2023). 
It should be noted that both these regions had a relatively greater number of overshoot droughts. Over the past 
few decades, numerous ecological restoration projects have been conducted in the Loess Plateau, especially the 
implementation of the “Grain for Green Project” in 1999, which significantly improved vegetation coverage (Sun 
et al., 2015). However, the incessant growth and expansion of vegetation cover triggered structural overshoot in 
these areas and simultaneously caused reduced NDVI.

To evaluate discrepancies between overshoot and non-overshoot droughts, differences in the minimum and 
total deseasonalized detrended NDVI anomalies were calculated in this study. As shown in Figure 7, the results 
exhibited consistent spatial patterns between the two algorithms. However, overshoot droughts showed a greater 
impact on NDVI, accounting for 46.3% (Figure  7a) and 42.7% (Figure  7b) of the vegetated areas for mini-
mum and total NDVI anomalies, respectively. These regions were primarily distributed in Shaanxi, southeastern 
Gansu, southern Qinghai, and parts of Xinjiang. It should be noted that overshoot droughts have already caused 
non-negligible consequences in the irrigated areas of Xinjiang and the Hexi Corridor, indicating that the recent 
agricultural expansion in NWC has worsened water scarcity (Lai et al., 2022). Moreover, the occurrence of over-
shoot droughts will exacerbate water limitation and accelerate vegetation deterioration, which is harmful to the 
ecosystem health and the growth of sustainable agriculture in fragile NWC.

According to the definition above, overshoot droughts are more likely to occur in the context of preceding favora-
ble circumstances. Therefore, differences in temperature and precipitation between overshoot and non-overshoot 
drought periods were calculated to understand the potential shift in drought evolution under climate change. As 
shown in Figure 8, 45.7% and 40.8% of the vegetated areas correspond to the spatial distribution of the higher 
temperature (Figure 8a) and more sufficient precipitation (Figure 8b), respectively, which also exhibited high 
spatial consistency. It is worth noting that this spatial climate pattern is opposite to that of the impacts between 
overshoot and non-overshoot drought (Figure  7), suggesting that regions with greater non-overshoot drought 
effects on NDVI also possessed favorable environmental conditions. Therefore, overshoot droughts are projected 
to occur more frequently and have more severe effects on ecosystems. However, if high temperatures and precip-
itation occur asynchronously during non-overshoot drought periods, compound dry-hot extreme events may also 

Figure 7. Differences between overshoot and non-overshoot drought periods of deseasonalized detrended NDVI anomalies in 
(a) minimum and (b) summation. Negative values (red) indicate a relatively greater impact of the overshoot drought, whereas 
positive values (blue) indicate a weaker impact.
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pose threats to ecosystems (H. W. Li et al., 2021). In this case, the simultaneous occurrence of both these events 
under the tendency of future climate variations could result in irreversible damage.

Over the past several decades, active afforestation projects in China have played an increasingly critical role in 
contributing to global vegetation greening (Zheng et al., 2021). However, a transition from greening to brown-
ing of vegetation has been discovered (Pan et  al., 2018; Yin et  al., 2016). Similarly, the extent of vegetation 
degradation has been found to increase in Xinjiang, which was previously concealed by prior natural changes 
and excessive vegetation growth driven by agricultural expansion (J. Du et al., 2015). Overall, our work strongly 
supports these documented findings, and we emphasize the importance of considering the structural overshoot of 
vegetation not only in NWC, but also globally.

4.2. Effects of Agricultural Irrigation on Structural Overshoot

Considering that irrigation is an important source of water supply in NWC, we chose the Xinjiang region, where 
irrigated agriculture is typically developing significantly, to examine the influence of irrigation water on the 
above outcomes. As shown in Figure 9, when the DLM was built without irrigation water as an input variable, 
approximately 33.8% of the drought events in Xinjiang from 1982 to 2015 were triggered by structural overshoot, 
whereas approximately 32.4% of drought events were identified as overshoot drought events when irrigation 
water (Fu, Kang, et al., 2022) was considered, showing a slight decrease in comparison to that without consider-
ing irrigation water. However, the distribution of the number of overshoot droughts along the latitude (Figure 9b) 
and spatially (Figures S5b and S5d in Supporting Information S1) remained similar. This is probably because the 
irrigated area in Xinjiang accounts for only 5% of the total area (Cai et al., 2021), whereas grassland accounts for 
approximately 86% of the vegetated areas (H. W. Li et al., 2021). Despite the rapid growth of irrigated agriculture 
in Xinjiang, its area contribution is still limited. In comparison, grasslands and woodlands are key components 

Figure 9. The spatial distribution of the number of droughts without consideration of irrigation water (a), and the distribution of the mean number of overshoot 
droughts (b) and non-overshoot droughts (c) along latitude. The upper left bar chart represents the number of overshoot droughts (red) and non-overshoot droughts 
(blue) in Xinjiang irrigated areas. The gray areas indicate the vegetated areas (mean NDVI > 0.1). Without, concurrent, and lagged indicate the inputs of DLM without 
irrigation water, with concurrent irrigation water, and with concurrent and previous 2 months of irrigation water, respectively, from 1982 to 2015.

Figure 8. Differences in (a) mean temperature and (b) total precipitation between overshoot and non-overshoot drought 
periods. Positive values (blue) indicate that the overshoot drought period has a higher temperature or precipitation, whereas 
negative values (red) indicate a lower temperature or precipitation.
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of the ecosystem. In the context of warming and humidification, increasing precipitation and rising temperature, 
rather than human activities, may be the major contributors to vegetation recovery and the primary triggers of 
structural overshoot in Xinjiang. This is also consistent with the lower effect of SWDI compared to SPEI in 
Figure 6.

Because irrigation may potentially have a lagged effect, information on irrigation over the same period as precip-
itation (i.e., concurrent and previous 2 months) was also considered in this study. The results showed that 34.1% 
of drought events were triggered by structural overshoot (Figure 9a), which showed a slight increase compared 
to that without irrigation (33.8%). According to this finding, previous irrigation may also create an environment 
conducive to vegetation development, which could lead to vegetation overgrowth, ultimately resulting in over-
shoot droughts. The Xinjiang oasis region's arable land area is expanding and has the greatest greening rate of 
any vegetation type in the region (J. Xue et al., 2021), which is primarily driven by an increase in irrigation inputs 
(Cai et al., 2021). Irrigation can stabilize agricultural yields by mitigating the detrimental impacts of excess heat 
and low precipitation on crop growth (Troy et al., 2015). However, owing to the non-linear relationship between 
crop yield and irrigation water, when irrigation water consumption rises, rapid crop growth is accompanied by 
a significant increase in ET, thus weakening water use efficiency, and when water approaches a certain limit, 
crop production may be adversely changed (Sun et  al.,  2006). Meanwhile, owing to the impact of structural 
overshoot, if excessive water is irrigated in the early stage, it may also contribute to rapid crop development in 
the short term, which will suffer from later water stress and probably lead to a reduction in yield. Therefore, to 
achieve the sustainable development of agriculture and ecology, future irrigation application strategies should 
not only address the limitations of water use efficiency, but also be aware of the potential structural overshoot of 
vegetation.

4.3. Uncertainties and Limitations

The altering vegetation phenology driven by climate change that leaves a lagged effect on the subsequent vegeta-
tion growth and drought recovery has been emphasized either using remote sensors or in situ stations (Maignan 
et al., 2008). For example, Y. Li et al. (2023) found a negative relationship between vegetation spring phenology 
and drought recovery time when extreme droughts occurred in the mid-growing season of Northern Hemisphere 
ecosystems. Similarly, Jin et al. (2020) revealed the significant adverse lagged effects of spring greening on the 
subsequent summer GPP especially in dry conditions. Furthermore, Buermann et al. (2018) found higher areal 
fractions of adverse compared to beneficial lagged effects about vegetation productivity responses to warming 
springs across northern ecosystems. W. Li et al. (2022) emphasized an increasing sensitivity concerning vege-
tative leaf area index (LAI) to soil moisture anomalies by employing an explainable machine learning method 
and observations, and primarily attributed the phenomenon to inter-annual precipitation decreases. These docu-
mented studies showed great agreement with our present findings of the structural overshoot. However, there are 
some uncertainties and limitations in our study resulting from the model simplifications and adopted data sets.

A rising atmospheric CO2 concentration could increase vegetation productivity and enhance water use efficiency 
(WUE) (Ault, 2020; Gonsamo et al., 2021). This “CO2 fertilization effect” could increase water availability and to 
some extent mitigate overshoot risk. However, recent studies (F. Li et al., 2023) found a saturation of global WUE 
since 2001 due to increased VPD that enhanced ET, suggesting a more important role of climate factors compared 
to vegetative physiological changes. We further accounted for the effects of humidity or VPD on vegetation 
dynamics by incorporating specific humidity or VPD separately into three climate variables (i.e., temperature, 
precipitation, and DLR) in DLM model analysis. And results showed about 34.4% of overshoot induced drought 
for considering the effects of specific humidity (Figure S6 in Supporting Information S1), and about 35.2% for 
incorporating VPD (Figure S7 in Supporting Information S1). These results indicate an insignificant impact on 
our existing outcomes, highlighting the robustness of our findings.

Since NDVI is based on reflectance data, it is only responsive to changes in canopy structure and pigment 
concentration and might not be sensitive to the rapidly varying photosynthetic conditions of plants (Dobrowski 
et al., 2005). This characteristic makes the response of NDVI to water stress typically time-lagged when drought 
occurs and may hinder the physiological and metabolic processes of vegetation, which makes it difficult for 
NDVI to effectively monitor changes in photosynthetic activity (C. Li et al., 2022). As a result, it may not be 
sufficient to quantify vegetation dynamics by relying solely on NDVI. From these considerations, the same 
analysis was conducted on kNDVI, and the spatial patterns of drought and overshoot drought are consistent with 
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NDVI results (Figure S8 in Supporting Information S1). There is also a consistency between our results and the 
ones obtained from SIF, but covering a shorter period (Figure S9 in Supporting Information S1). These consensus 
results further support the robustness of our findings.

Additionally, some simplifications of the models and approaches were inevitable in this study. Only the effects 
of concurrent temperature, radiation, and precipitation from concurrent and previous 2 months, were considered 
in the construction of DLM. However, the lag time between vegetation and precipitation may vary across areas 
owing to regional heterogeneity. For example, Ning et al.  (2015) discovered a 1-month time lagged effect of 
vegetation on precipitation in the northern Loess Plateau, whereas Ma et al. (2021) discovered that the effect of 
precipitation on NDVI was mostly lagged by a 1–2 months in Xinjiang. Focusing on the seasonal scale, Zhao 
et al. (2020) indicated that vegetation in the Loess Plateau exhibited a time lag of more than 1 month to temper-
ature and precipitation in the spring and winter, whereas NDVI in the summer showed no lagged response to 
temperature but a 1-month time lag to precipitation. In addition, we did not consider the time lag in temperature 
and radiation, but an increase in the previous temperature or radiation that led to an increase in soil temperature 
may also disrupt vegetation phenology (Mulder et al., 2017). Similarly, the combined effects of temperature and 
precipitation over a range of timescales may also result in various changes in vegetation growth. In conclusion, 
it is challenging to include all probabilities because of the complicated spatiotemporal relationships between 
ecosystems and meteorological factors, along with the potential effects of diverse regional vegetation types 
and geographic elements. Additionally, higher species diversity might increase the resistance of ecosystems to 
drought (D. Liu et al., 2022), and different types of soil and vegetation also influence vegetation dynamics (Z. Du 
et al., 2017). However, these factors were not considered in the present study. Despite the uncertainties and limita-
tions, this study revealed that vegetation greening in NWC, primarily induced by climate change, has already led 
to non-negligible structural overshoot. This finding is crucial for understanding the role of vegetation dynamics 
in the evolution of drought, which is conducive to formulating agricultural production strategies and promoting 
the development of measures for drought adaptation.

5. Conclusions
In this study, the structural overshoot of vegetation in the arid region of Northwest China from 1982 to 2015 was 
quantitatively assessed based on reanalysis and satellite remote sensing data sets. The following conclusions were 
drawn from the results of this study.

 (1)  Temperature, precipitation, and radiation showed consistently increasing trends, which corresponded to the 
prerequisites for the occurrence of structural overshoot. A strong negative correlation between NDVI and SM 
was observed in areas where NDVI increased significantly, indicating the existence of structural overshoot.

 (2)  During the past 34 years, approximately 34.6% of the drought events were induced by structural overshoot, 
and lagged effects explained 16.7% of the NDVI declines for these overshoot drought events. The occurrence 
probability of structural overshoot showed an increasing trend over time, and the vegetation component at the 
sub-seasonal timescale was the major contributor.

 (3)  The NDVI acted as the predominant factor for the occurrence of structural overshoot, followed by precipita-
tion, whereas the contributions of temperature and radiation were relatively small. Compared to human activ-
ities (e.g., irrigation), meteorological factors had more significant impacts on vegetation dynamics in  NWC.

 (4)  In regard to severity, the area extent of overshoot droughts nearly matched that of non-overshoot droughts 
in NWC. However, given the influence of warm-wet climatic patterns and intensified human activities, the 
persistent structural overshoot of vegetation is expected to escalate drought frequency and aggravate vegeta-
tion browning.

This study effectively reveals the adverse effects of structural overshoot in the ecosystem and highlights the 
necessity of continuously considering vegetation dynamics throughout agricultural development under future 
climate variation scenarios.

Data Availability Statement
The NDVI3g v1 data set is available at http://poles.tpdc.ac.cn/en/data/9775f2b4-7370-4e5e-a537-3482c9a83d88/. 
The CMFD data set is available from Yang et al. (2019). The TerraClimate data are available from Abatzoglou 
et al. (2018). The ERA5-Land soil moisture data are available from Muñoz Sabater (2019). The SPEI data set 
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is available at https://spei.csic.es/spei_database_2_6. The CSIF data set is available from Y. Zhang et al. (2018). 
The land cover data are available from X. Xu et al. (2018).
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