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a b s t r a c t

This paper developed a remote-sensing-based multiobjective (RSM) approach to formulate sustainable
agricultural land and water resources management strategies at a grid scale. To meet the spatial reso-
lution and accuracy need of agricultural management, downscaled precipitation data sets were obtained
with the help of global precipitation measurement (GPM) data and other spatial information. Spatial crop
water requirement informationwere obtained via the combination use of the Penman-Monteith method,
remote sensing information (MOD16/PET) and virtual water theory. Through integrating these spatial
data and considering the impact of different spatial environments on crop growth, a grid-based integer
multiobjective programming (GIMP) model was developed to determine best suitable crop planting
types at all grids. GIMP can simultaneously consider several conflicting objectives: crop growth suit-
ability, crop spatial water requirements, and ecosystem service value. Further, GIMP results were
inputted into a grid-based nonlinear fractional multiobjective programming (GNFMP) model with three
objectives: maximize economic benefits, maximize water productivity, and minimize blue water utili-
zation, to optimize irrigation-water allocation. To verify the validity of the proposed approach, a real-
world application in the middle reaches of Heihe River Basin, northwest China was conducted. Results
show that the proposed method can improve the ecosystem service value by 0.36 � 108 CNY, the eco-
nomic benefit by 21.85%, the irrigation-water productivity by 25.92%, and reduce blue water utilization
rate by 24.32% comparing with status quo.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction development of regional agriculture (Li et al., 2019b). When dealing
Global economic development and population growth jointly
deepen the water shortage and environmental crisis, which is an
urgent global problem facing humankind. Agriculture is the largest
water consumer and one of the major leading sources of environ-
mental degradation (Zhang et al., 2019b). The limited agricultural
land and water resources are the major constraint on agricultural
production, which calls for more efficient resource utilization
strategies. Mathematical optimization models have been proved as
important tools in optimally allocating limited agricultural land
(Gui et al., 2016) and water resources (Li et al., 2019a), maintaining
ecological health (Zhang et al., 2019b) and supporting sustainable
ter Research in China, China
eijing, 100083, PR China.
with real-world problems, some basic parameters, such as precip-
itation and evapotranspiration (ET), have high spatiotemporal
variability (Tang et al., 2019), increasing the difficulty in modeling.
The emergence of remote sensing technology produces more
spatial information (Michaelides et al., 2009), and brings hope to
solve the above problems (Bastiaanssen et al., 2000). It is a hot issue
to make full use of remote sensing information in optimizing
management of agricultural spatial resources for improving the
utilization efficiency of limited resource. Therefore, a remote-
sensing-based multiobjective (RSM) approach is necessary for
determining crop planting type and allocating limited irrigation-
water to spatial grids (1 km � 1 km) with the help of remote
sensing information.

Precipitation and ET play a very important role in the manage-
ment of agricultural land and water resources. Especially for some
arid and semi-arid regions, there is strong spatial variability and
temporal distribution in precipitation and ET, which need to be
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considered in decision-making processes (Tang et al., 2019). In
recent years, the global precipitation measurement (GPM, Huffman
et al., 2019) data with higher spatial resolution (0.1�), time reso-
lution (30 min), and higher accuracy in arid and semi-arid regions
was widely used around the world. However, spatial resolution and
accuracy of GPM data is too coarse tomeet the requirements of RSM
approach. Many efforts have been made to downscaling the GPM
data, and many factors were considered, such as geographic loca-
tion information (longitude, latitude) and topographical data
(slope, aspect, elevation, Chen et al., 2017). Agnew and Palutikof
(2000) attempted to improve the accuracy of precipitation by us-
ing multivariate regression with the interpolation of residuals, but
remote sensing data were ignored. Previous research developed a
downscaling method of spatial sharpening based on multivariate
data (Immerzeel et al., 2009). Therefore, this paper attempts to use
multivariate linear regression with the residual correction (MLRR)
method to obtain down-scaled precipitation data with high accu-
racy based on GPM data, terrain factors, and geographic location
information. Thereafter, the obtained spatial distribution precipi-
tation was evaluated by a cross-validation method (Goovaerts,
2000). As for another key parameter in agricultural production
planning, ET information from remote sensing has high noise and
uncertainty (Velpuri et al., 2013). To address this problem, Tang
et al. (2019) developed a new method combining the FAO
Penman-Monteith (PM, Allen et al., 1998) method with remote
sensing MOD16/PET data (Mu et al., 2007), to obtain more accurate
spatial reference evapotranspiration (ET0). This study further at-
tempts to transfer the spatial ET0 information to spatial crop water
requirement (CWR, Allan, 1993) and crops virtual water content
(VWC, Su et al., 2014) through virtual water theory (Hoekstra, 2011).
These spatial information can be used to formulate more sustain-
able agricultural production strategies in optimization models.

Complexities in agricultural production systems, such as
nonlinear relationships (Fasakhodi et al., 2010), multiple conflicting
objectives (Li et al., 2019d), socio-economic conditions (Li et al.,
2019a) and environment impacts (Zhang et al., 2019b), were
attempted to solve. In agricultural resources management, major
tasks are to determine the type of crops and water allocation in
specific spatial locations. Thus, mixed 0e1 integer programming
was developed to obtain crop-planting structure on cropping plots
(Chono et al., 2012). When determining the crop planting structure,
crop suitability should be considered due to its high spatial vari-
ability, which is an important indicator for evaluating the situation
of crop growth environments (such as soil, terrain, and climate,
Abah and Petja, 2017). Spatiotemporal variability of CWR and pre-
cipitation in different spatial locations should also be taken into
consideration in planning agricultural production strategies.
Therefore, a grid-based integer multiobjective programming
(GIMP) integrated integer 0e1 programming and multiobjective
programming was developed to obtain the crop planting structure
at a grid scale, which can consider crop growth suitability, spatial
CWR, and ecosystem service value simultaneously. For water
management, some efforts have been made to allocate agricultural
water resources, such as Zhang et al. (2018). However, few of them
can conduct nonlinear, multiobjective, and fractional problem in
planning water allocation at a grid-scale with the help of a spatial
crop planting structure, and thus these optimization schemes
without spatial location information cannot provide managers
precise water allocation schemes in each grid. To address such a
problem, this paper further establishes a grid-based nonlinear
fractional multiobjective programming (GNFMP) model consid-
ering multiple objectives, including economic benefits, irrigation-
water productivity, and blue water utilization efficiency at the
same time. To generate satisfactory results from the proposed
models, the minimum deviation method (Li et al., 2019b) is
considered as a possible solution method in dealing with the GIMP
and GNFMP model.

In this study, a RSM approach was developed to improve the
spatial resolution of agricultural resource management schemes
and ensure sustainable agricultural management, which has the
following advantages: 1) some key factors with high spatial vari-
ability can be obtained based on remote sensing information; 2) the
optimal crop planting type can be determined at each grid by the
GIMP model considering resources, efficiency and environmental
factors; and 3) the corresponding water-allocation schemes based
on GIMP results can be calculated through GNFMP considering
conflicting objectives.

2. Development of methodology

2.1. Overview of the problem

Modern agriculture advocates a green, efficient and sustainable
way to use limited land and water resources. However, the spatial
resolution of existing research about land and water resources
optimization cannot meet the precise management requirements
in real production. For example, most previous management
schemes cannot determine crop planting type and irrigation-water
in specific spatial locations inside a river basin or irrigation area. In
order to provide more practical decision support information, river
basin managers urgently need more precise optimization results to
manage agricultural production. Recently, the monitoring devel-
opment of remote sensing in ground precipitation and evapo-
transpiration provide possible inputs for a RSM approach, but these
spatial data always need to be processed to meet managers’ re-
quirements. When managing land resources, excessively pursuing
economic benefits may cause degradation of the ecological envi-
ronment, excessive use of blue water resources, and reduce the
value of the total ecosystem services. Thus, to use land and water
resources in a more efficient and sustainable way, decision makers
are facing the following issues. 1) How to determine which crops
are most suitable to plant on each spatial grid? A reasonable
planting location can not only improve crop yield and quality, but
also improve water use efficiency. 2) Due to different potential
evapotranspiration and precipitation amounts in different spatial
grids, how can requirements for blue water resources be reduced
through management measures? 3) How can grain yield, water use
efficiency and total system benefits be simultaneously guaranteed?
Especially for arid and semi-arid areas, water managers have to not
only consider the utilization efficiency and production efficiency of
blue water, but also pay attention to farmers’ pursuit of economic
benefits.

Therefore, the framework developed in this study (Fig. 1) at-
tempts to solve these problems, and can be divided into four parts.
1) Acquisition and processing of basic spatial data. 2) Establishing a
GIMPmodel for optimal spatial crop planting structure at grid scale.
3) Formulating a GNFMP model to obtain spatial irrigation-water
allocation. 4) Application of the proposed approach to a real-
world case study for improving land and water use efficiency.

2.2. Spatial analysis of basic data

2.2.1. Spatial analysis of precipitation
Some key factors, such as terrain factors (slope, aspect),

geographical location information (latitude, longitude) and GPM
data are integrated to obtain monthly precipitation results with
higher spatial resolution and accuracy. The specific steps of the
MLRR method are listed as follows.

(1) Pre-processing



Fig. 1. Framework of the grid-based precise optimization approach.
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Use projection transformation, resampling and spatial modeling
to process the monthly GPM data, slope and aspect data, and then
remove invalid values to obtain these data with a spatial resolution
of 1 km in the WGS-1984 coordinate system.

(2) Multiple linear regression

The multiple linear regression (MLR) method is used for
downscaling the spatial data, and the typical form can be shown as
follows.
Y ¼ a0 þ a1X1 þ a2X2 þ a3X3 þ a4X4 þ a5X5 þ a6X6 (1)

Where Y is the precipitation value of meteorolY ¼ a0 þ a1X1 þ
a2X2 þ a3X3 þ a4X4 þ a5X5 þ a6X6ogical stations; X1, X2, X3, X4, X5,
X6 represent the monthly normalized value of GPM, DEM, latitude,
longitude, aspect, and slope of the meteorological station, respec-
tively; a0; a1; a2; a3; a4; a5; a6represent the regression coefficients,
respectively.

The regression results of each grid can be obtained by the
following function.
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Yj ¼ a0 þ a1X1j þ a2X2j þ a3X3j þ a4X4j þ a5X5j þ a6X6j (2)

Where Yj is the regression results of the jth grid; X1j, X2j, X3j, X4j, X5j,
X6j represent the monthly normalized value of GPM, DEM, latitude,
longitude, aspect, and slope of the jth grid.

(3) Inverse distance weighting

Calculating residuals between obtained values from the MLR
method and observed results from ground meteorological stations.
The IDW method for spatially interpolating the residuals can be
shown as follows.

Rj ¼

Pn
i¼1

Zi
dp
iPn

i¼1
dpi

(3)

Where Rj is the residual value of the jth grid, Zi is the residual of the
ith meteorological station, n is the number of stations, di is the
distance from the jth grid to the ith meteorological station, p is the
power of distance.

(4) Precipitation downscaling results

The final precipitation of each grid will be obtained as follows:

Pj ¼ Yj þ Rj (4)

Where Pj is the precipitation of the jth grid, Yj is the multiple
regression results of the jth grid, Rj is the residual of the jth grid.

(5) Validation

The cross-validation method (Goovaerts, 2000) is used for
measuring the applicability of the MLRR method by comparing
with GPM data, linear regression (LR), MLR, and IDWmethod. Thus,
root mean square error (RMSE), mean absolute error (MAE), and
mean relative error (MRE) are used for the criteria to evaluate
different methods. Equations of these indicators are shown as
follows.

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðPi �MiÞ2

N

vuuut
…MAE¼

PN
i¼1

jPi �Mij

N
…MRE

¼ 1
N

XN
i¼1

����ABSðPi �MiÞ
Pi

����
(5)

Where, Pi is the i th estimated result, Mi is the i th observation
result, N is the number of samples.

2.2.2. Spatial analysis of evapotranspiration and VWC
To obtain spatial evapotranspiration and VWC, meteorological

data from meteorological stations are used for estimating ET0
through the PM equation. Then, the results obtained can be fitted
bymonthlyMOD16/PET remote sensing data to calculate the spatial
ET0 information of all grids (Tang et al., 2019). Based on information
obtained, the monthly VWC can be generated. The detailed steps
are shown as follows.

(1) Spatial ET0

PM equation is used for calculating ET0 (PM results), which can
be assumed as the real value of ET0. According to previous research,
MOD16/PETcan be converted to ET0 through the following function.

ET0 ¼ f ðPETMOD16Þ (6)

(2) Crop water requirements

CWR are the main reference when formulating optimization
models to guide water allocation (Caselles et al., 1992), and can be
calculated by the following formula (Westerhoff, 2015):

ETc ¼Kc � ET0 (7)

Where, ETC is the crop water requirement, mm; KC is the crop co-
efficient; ET0 is the spatial reference crop evapotranspiration, mm.

(3) Virtual water content (VWC)

The crop VWC can be calculated as equation (8) shows (Li et al.,
2019b). Thus, the VWC value of different crops varies with the crop
planting type, spatial location, and time period.

VWC¼1;000� ETC � A (8)

Where VWC is the virtual water content, m3; the factor 1,000 is
meant to convert the ETC in mm into m; A is the irrigated area, m2.

The virtual water is further converted into blue water and green
water by the following formulas (Li et al., 2019b).

VWCB ¼1;000� ETB � A (9)

VWCG ¼1;000� ETG � A (10)

Where VWCB is the monthly blue water component, m3; VWCG is
the monthly green water component, m3; ETG is monthly green
water evapotranspiration, mm; ETB is monthly blue water evapo-
transpiration, mm. The ETG (Su et al., 2014) and ETB (Li et al., 2019b)
can be estimated by the CropWat model (Hoekstra et al., 2011).

ETG ¼minðETC ; EPÞ (11)

ETB ¼W (12)

EP is the effective precipitation, mm; andW is the net irrigation-
water; if the effective rainfall is greater than or equal to ETC,W is 0,
mm.

2.3. Crop spatial planting structure optimization

The GIMP model is established for allocating limited land re-
sources, which aims tomanage tradeoffs among land use efficiency,
resources saving, and environmental impacts. In the GIMP model,
mixed 0e1 integer programming can determine the type of crops
on each grid. The objectives of this model include maximizing crop
growth suitability, maximizing the value of ecosystem services, and
minimizing the irrigation-water demand. Constraints of the GIMP
model can ensure grain yield and economic benefits of farmers. The
overall structure of the GIMP model is now discussed. Appendix I
lists meanings of the symbols and applies to all of the following
functions.

2.3.1. Objectives

(1) Maximize system crop growth suitability
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According to planting suitability of different crops in each grid
obtained by the evaluationmethod (He et al., 2018), the objective of
maximizing systemic crop growth suitability can be shown as
follows.

maxF1 ¼
XN
n¼1

XI
i¼1

mnihni (13a)

(2) Minimize spatial crop water requirements of system

In order to save limited irrigation-water, it is necessary to
minimize the total crop water demand. The objective function can
be represented as follows.

minF2 ¼
XN
n¼1

XI
i¼1

mniA

 XT
t¼1

ETCnit �
XT
t¼1

EPnt

!
(13b)

(3) Maximize ecosystem service value

According to existing research (Zhang et al., 2019b), the regional
ecosystem service value is related to the total crop planting area,
and the relationship between these two parameters can be char-
acterized by a function. With help of this relationship, the objective
of maximizing ecosystem service value can be expressed as follows.

maxF3 ¼ f

 XN
n¼1

XI
i¼1

mniA

!
(13c)
2.3.2. Constraints

(1) Suitability constraints:

mni ¼ 0 or 1; cn; i (13d)

XI
i¼1

mni � 1; ci;n (13e)
(2) Food security constraints:

XN
n¼1

XI
i¼1

mniACi � FD$PO;cigrain crop (13f)
(3) Economic benefit constraint

XN
n¼1

XI
i¼1

mniABiCi � CN (13g)
(4) Planting area constraints

XN
n¼1

mniA � Amini;ci (13h)
XN
n¼1

mniA � Amaxi;ci (13i)
2.4. Spatial irrigation-water optimization

Based on the crop space planting structure, a GNFMPmodel was
established to optimize irrigation-water allocation. Objectives of
the GNFMP model include maximize economic benefits, maximize
net irrigation-water productivity, and minimize blue water utili-
zation. The meanings of the symbols can be found in Appendix I.
2.4.1. Objectives

(1) Maximize gross economic benefits:

Crop water production functions was approved to a useful tool
for describing the relationship between yield of a certain crop and
water resources (Smilovic et al., 2016). During the whole growth
period, the crop water production function can be expressed as a
quadratic function based on experimental data (Li et al., 2019c). The
gross economic benefits can be expressed as follows:

maxF1’¼
XN
n¼1

XI
i¼1

mniABi

2
4ai
 XT

t¼1

Wnit

!2

þ bi
XT
t¼1

Wnit þ ci

3
5
(14a)

(2) Maximize irrigation-water productivity:

Irrigation-water productivity, the ratio of total crop yield to total
irrigation-water, is used for measuring the production efficiency.
The specific objective function can be expressed as follows.

maxF2’¼

PN
n¼1

PI
i¼1

mniA

"
ai

 PT
t¼1

Wnit

!2

þ bi
PT
t¼1

Wnit þ ci

#

PN
n¼1

PI
i¼1

PT
t¼1

mniAWnit=l

(14b)

(3) Minimize blue water utilization rate:

Blue water utilization rate is the ratio of total VWCB to the total
VWC. This objective can be expressed as:

minF3’¼

PN
n¼1

PI
i¼1

PT
t¼1

mniVWCBnit

PN
n¼1

PI
i¼1

PT
t¼1

mniVWCnit

(14c)
2.4.2. Constraints

(1) Water supply constraint
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XN
n¼1

XI
i¼1

mniAWnit � lQt ;ct (14d)
(2) Food security constraints:

XI
i¼1

XN
n¼1

mniA

2
4ai
 XT

t¼1

Wni

!2

þ bi
XT
t¼1

Wni

þ ci

3
5� FD$PO;cigrain crops (14e)
(3) Crop water requirements constraints:

XN
i¼1

mniðWnit þ EPntÞ�
XN
i¼1

mniETminnit cn; t

(14f)

XI
i¼1

mniðWnit þ EPntÞ�
XI
i¼1

mniETC nit cn; t (14g)
(4) Non-negative constraint

Wnit � 0; cn; i; t (14h)

2.5. Model solution method

There are multi-objective, integer, nonlinear, and fractional
programming in the DIMP and DNFMP models in this paper. Thus,
the minimum deviation method is used for converting the multi-
objective model into a single-objective model for solving multiple
objectives (Li et al., 2019b). The specific steps are as follows:

Step 1 Model the GIMP.
Step 2 Transform each objective function into a model with
minimized objective.
Step 3 Solve each objective separately to obtain the maximum
and minimum values of each objective: Fmax

1 ; Fmin
1 ; Fmax

2 ; Fmin
2 ;

Fmax
3 ;Fmin

3 .
Step 4 Convert multiobjective to single-objective model by the
following formula, and solve it to obtain the spatial crop
planting structure:

max¼ Fmax
1 � F1

Fmax
1 � Fmin

1

þ Fmax
2 � F2

Fmax
2 � Fmin

2

þ Fmax
3 � F3

Fmax
3 � Fmin

3

(15)
Step 5 Input the results of the GIMPmodel to the GNFMPmodel,
and then repeat Steps 2 to 4 to generate the spatial water allo-
cation results.

3. Application

3.1. Study area

The Heihe River basin (37�500-42�400 N, 98�e101�300 E) is the
second largest inland river basin in China, located in the middle of
the Hexi Corridor and the eastern part of Gansu Province, northwest
China. It is divided by the Yingluo and Zhengyi Gorge hydrological
station as three parts including upstream, midstream and down-
stream. The geolocation of the study area is shown in Fig. 2.

The study area is the middle reach of the Heihe River basin,
which is one of the main food production areas in northwest China
(Zhang et al., 2019b). The main crops of this region are field corn
(i ¼ 1), seed corn (i ¼ 2), wheat (i ¼ 3) and some economic crops
(i ¼ 4). The growth period of these crops is concentrated from April
to September (t ¼ 1, 2 … 6, respectively). Both farmland area and
the water consumption in the middle reach occupy over 80% of the
Heihe River Basin. Due to high evapotranspiration (ET0 is
1,453e2,351 mm) and low precipitation (60e280 mm) in the re-
gion, irrigation is the main source of water for crops, accounting for
more than 90% of the total water consumption. Unreasonable use of
the land and water resources lead to too much water used in the
middle reach, destroying the basin ecological environment (Zhang
et al., 2019a). It is urgent for the middle reach of Heihe River Basin
to find a more sustainable agricultural production strategy. There-
fore, to improve the utilization efficiency of limited land and water
resources, this study attempts to help regional managers optimally
determine the main crop planting type for each grid (A ¼ 1 km2,
N ¼ 2,150) on cultivated land in the study area, and the amount of
irrigation-water to each grid during different time periods.

The slope and aspect data (the spatial resolution is 90 m) of the
study area come from the Geospatial Data Cloud (http://www.
gscloud.cn/sources/). The elevation distribution (spatial resolution
is 30 m) is derived from the ASTER GDEM data. The soil types
(spatial resolution is 1 km) are from the Heihe Plan data manage-
ment center (http://www.heihedata.org/). The distribution of
aspect, slope, DEM, and soil type in the study area are shown in
Fig. 3.

Fig. 3 indicates that the aspect and slope of the study area have
high spatial variability. The DEM varies greatly between 1,234 m
and 3,633 m above sea level, and the soil type is also very complex
with 13 species. In this area, spatial crop planting structure and
optimal water distribution are determined according to CWR and
precipitation. However, CWR and precipitation are affected by
many factors, such as terrain, soil, meteorological, and basic agri-
cultural facilities (Tang et al., 2019). With the change of
geographical location, these factors have high spatial variability.
Remote sensing technology is considered as a potential tool to
obtain spatial ET and precipitation information. According to actual
conditions, two assumptions have been made in processing remote
sensing data: 1) the soil water remains the same before and after
the growth period (Allen et al., 1998); 2) due to the deep ground-
water depth in study area, the groundwater recharge is negligible
(Chadha and Chadha, 2007).

Deterioration of the ecological environment of the study area
and limited water and soil resources jointly call for more precise
allocation schemes in space. Thus, the RSM approachwas applied to
this area. In this process, several questions are desired to be solved:
1) high spatial variability exists in evapotranspiration and precipi-
tation; 2) existing spatial resolution of remote sensing data is
insufficient for practical resources planning problems; 3) few
research efforts attempt to establish precise optimizationmodels at
a grid scale; and 4) conflicting objectives cannot be considered
simultaneously in the decision-making process. To address the
above problems, GIMP and GNFMP are developed to generate
spatial decision-making alternatives for supporting decision
makers in managing limited agricultural water and soil resources.

3.2. Data collection

This study selected 2014 as the typical year. The remote sensing
data used in this paper were collected from the Global Precipitation

http://www.gscloud.cn/sources/
http://www.gscloud.cn/sources/
http://www.heihedata.org/


Fig. 2. Location of the study area.

Fig. 3. Slope map (a), aspect map (b), DEM (c), and soil type map (d) in the study area.
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Measurement (GPM) data (released on April 1st, 2014, spatial res-
olution is 0.1�, time resolution is month, Huffman et al., 2019), and
MODIS/PET data (spatial resolution is 1 km, time resolution is
month). Meteorological data were downloaded from the China
Meteorological Data Service Center (http://data.cma.cn/en).

Socio-economic information, crop planting area, crop yield,
water supply information, and hydrological information during
2004e2018 were collected from the Statistical Yearbook of
Zhangye City and field research and trials. Irrigation-water pro-
duction functions of different crops can be obtained from previous
research (Li et al., 2017). Due to the priority position of economic
crops, linear irrigation-water production functions is chosen for
reflecting the relationship between irrigation-water and crop
yield. The irrigation-water production function, market price,
yield, and the available planting area of each crop are shown in
Table 1.

KC (crop coefficient) values of field corn, seed corn (Jiang et al.,
2014), wheat (Kang et al., 2003) and economic crop (Li et al.,
2019c) can be obtained from previous studies. The local popula-
tion in 2014 was 82.07 � 104, the minimum grain demand per
capital is 400 kg/per capital and the minimum gross economic
benefit of the study area is determined according to the historic
average net income per km2, which is 110.61 � 108 CNY. KC values,
the monthly agricultural available groundwater, and surface water
supply in the study area are shown in Table 2.

Through previous studies, the relationship between the
ecosystem service value and the total crop planting area in this
study area can be expressed as: EV ¼ 49:21�A�762:20

A�15:56 (Zhang et al.,

http://data.cma.cn/en


Table 1
Irrigation-water production function, market price, crop yield and available crop planting area.

Crop Irrigation-water production function of crop (102 kg/km2) (X is the amount of
irrigation-water, cm)

Market Price（CNY/
kg）

Crop yield (104 kg/
km2)

Available crop planting
area (km2)

Lower
bound

Upper
bound

Field corn Y ¼ 3,281.67 þ 199.83 � X-1.22 � X2 2.32 83.85 149.59 495.81
Seed corn Y ¼ 3,604.24 þ 179.58 � X-1.23 � X2 3.05 80.07 869.74 1,195.62
Wheat Y ¼ 2,328.55 þ 167.67 � X-1.44 � X2 2.26 84.39 195.97 267.31
Economic

crop
Y ¼ �52,388.43 þ 2099.00 � X 4.02 605.47 335.22 832.39

Table 2
KC values of crops and the available water supply in each month.

Time Kc value of main crops Water supply（104 m3）

Field corn Seed corn Wheat Economic crop Surface water Ground water

April 0.20 0.22 0.30 0.51 3,837.53 2,342.30
May 0.44 0.50 1.15 0.86 15,618.13 2,366.09
June 0.53 1.16 1.15 1.03 23,341.89 2,335.39
July 1.46 1.20 0.93 1.05 30,835.91 2,351.78
August 1.14 1.20 0.64 28,765.76 2,335.12
September 1.22 0.60 0.62 14,925.84 2,291.28
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2019b). The functional relationship between MOD16/PET and PM
results is: ET0¼ 0.7884� PETMOD16－28.3826 (Tang et al., 2019). The
effective precipitation can be estimated by EP ¼ a, P.

Where EV represents ecosystem service value, 108 CNY; A is the
total crop planting area in study area, 104 ha; ET0 is the reference
crop evapotranspiration, mm; PETMOD16, mm. EP is the effective
precipitation, mm; ais the effective precipitation coefficient,
dimensionless. Based on previous studies, 0.8 was chosen for a in
this area (Zhang et al., 2018); P is precipitation, mm.

The crop suitability data (spatial resolution is 1 km) of wheat
(He et al., 2018), corn and economic crop (He et al., 2020) of this
study area came from previous studies, which are shown in Fig. 4.
The suitability of field corn and seed corn was not distinguished in
collected data, and thus their suitability is assumed the same.
4. Results analysis and discussion

4.1. Results analysis and discussion of spatial basic data

4.1.1. Downscaling and accuracy analysis of precipitation
GPM data were released on April 1st, 2014, and the growth

period of each crop in the study area is between April and June.
Thus, this study uses the GPM data during the growth period from
Fig. 4. Crop suitability in the midd
2014 to 2018. The comparison of GPM data and ground observa-
tions is shown in Fig. 5 (a).

In Fig. 5 (a), a visible difference exists between the GPMdata and
the observation data, and the distribution is very scattered.
Regression methods were used to fit the GPM data based on the
ground observations, and the comparison results are shown in
Fig. 5 (b). The deterministic coefficient (R2, Gui et al., 2016) of these
two data is 0.67, indicating that more accurate data are needed to
meet the requirements in the optimization model. In order to
further improve the accuracy of remote sensing information, the
multiple linear regression method was used. Through the calcula-
tion, the regression equation can be obtained, which is shown in
Equation (16). The corresponding MLR results are shown in Fig. 5
(c).

Y ¼0:75*X1 þ 0:27*X2 þ 0:13*X3 þ 0:01*X4 þ 0:04*X5

� 0:5*X6 � 0:20 (16)

Fig. 5 (c) shows that the R2 of the multiple regression results
have been improved to 0.80. The scatter distribution is more
convergent, and the consistency between the predicted results and
the actual results is improved. That is, when using remote sensing
GPM data, terrain factors, and the geographic location information
le reach of Heihe River basin.



Fig. 5. Comparison of monthly ground observation precipitation with GPM values (a), the linear regression results (b) and the multiple regression results (c).

Y. Tang et al. / Journal of Cleaner Production 265 (2020) 121792 9
to obtain the spatial precipitation distribution results, the accuracy
of results can be further improved. Then, MLRR results can be ob-
tained after residual correction based on MLR results.

To verify the validity of the MLRR method, four datasets,
including GPM, LR results, MLR results, and IDW results, were used
for comparing with MLRR results through the cross-validation
method. Three indicators, RMSE, MAE, and MRE, of each dataset
can be calculated and are shown in Table 3. It is clear that the MLRR
method has the best performance among these methods. MLRR can
not only improve the accuracy of prediction results, but also help
downscale the GPM to smaller grid (1 km � 1 km).

The final downscaling precipitation results (MLRR results) can
be generated as Fig. 6 (b) (Taking the typical year of June as an
example). Fig. 6 (a) shows the original GPM data with low spatial
resolution (a). It can be found that the spatial resolution of the
MLRR results has been improved, indicating that MLRR can help
provide more precise data to meet the requirements of precise
agricultural management. The MLRR results from April to
September on cultivated land (Fig. 7) can be obtained in the same
way. In Fig. 7, monthly precipitation obtained shows large spatio-
temporal variability, and the areas with high precipitation are
mainly mountainous areas near the upper reach. In summary,
MLRR results can provide regional water managers more detailed
information on a smaller scale. These information will be input to
the DIMP and GNFMP models to determine crop planting structure
and water allocation schemes.
4.1.2. Results analysis and discussion of VWC
Through a fitting function and MODD16/PET data, the monthly

ET0 results for each grid of cultivated field can be obtained as shown
in Fig. 8, which have high spatiotemporal variability. According to
the results obtained, the southern parts of the study area (closer to
the upper reaches of the Heihe River Basin with higher elevation)
featured as low potential evapotranspiration and high precipitation
may be relatively humid, and thus have low irrigation-water de-
mand. On the contrary, the northern parts (closer to the lower
reaches of the Heihe River Basin with lower elevation) with high
Table 3
RMSR, MAE, MRE and the ranking of GPM, LR, MLR, IDW, MLRR datasets.

Method RMSE Rank of RMSE MAE

GPM 42.5827 4 34.3659
LR 44.0797 5 35.2389
MLR 28.4422 3 22.1755
IDW 24.9587 2 20.9421
MLRR 24.1615 1 18.0322
potential evapotranspiration and low precipitation are suffering in
arid conditions, where irrigation plays a more important role in
agricultural production. These information can obviously help
regional managers formulate more sustainable agricultural pro-
duction strategies to improve water use efficiency.

According to the virtual water theory, the monthly VWC of crops
on each grid can be calculated. Fig. 9 shows accumulated VWC of
each crop during whole growth period. The VWC values of the same
crop in different grids have large gaps, and the VWC values of
different crops in the same grid are also different. These spatio-
temporal information will be considered in the RSM approach.
4.2. Results analysis and discussion of DIMP model

The optimization results of the GIMP model are shown in Fig. 10
(a). The total planted area obtained of field corn, seed corn, wheat,
and economic crops are 393 km2, 870 km2, 267 km2, and 396 km2,
respectively. Tomake a comparisonwith GIMP results, three single-
objective models with objective F1, F2, and F3, respectively, as well
as the same constraints as GIMP were created. After solving these
models, optimization results can be obtained as shown in Fig. 10(b
and c, d). Optimization objectives of F1, F2, and F3 each focus on one
certain aspect, ignoring other important impacts. The GIMP model
comprehensively considered all three objectives, and rational
spatial distribution results can be obtained. As shown in Fig. 10, we
found that: 1) economic crop are mainly concentrated in south
areas, which may be caused by its high water demand and crop
suitability; 2) the distribution of wheat relatively scattered in the
study area, because the north with high potential evapotranspira-
tion and low precipitation can save the limited water recourse,
while its crop suitability is higher in the south; 3) field corn and
seed corn are concentrated in the central region, where the crop
suitability of these crops are higher than others; 4) seed corn has
the greatest advantages and the largest planting area among all
crops, which is consistent with its economic benefit and crop
suitability performance; 5) areas with no allocated crop are mainly
located in regions with high potential evapotranspiration, low
Rank of MAE MRE Rank of MRE

4 0.4609 5
5 0.4551 4
3 0.4424 3
2 0.3695 2
1 0.3688 1



Fig. 6. GPM precipitation (a), and downscaling precipitation results (b) of June 2014.

Fig. 7. The precipitation from April to September in typical year on cultivated land.

Y. Tang et al. / Journal of Cleaner Production 265 (2020) 12179210
precipitation, and low suitability of all four crops. That is, if regional
managers want to alleviate the pressure on the ecological envi-
ronment in the study area, the areas with no allocated crop could be
returned to forests to meet local policy requirements. Decision
makers can determine the best planting location of each crop with
the help of these results, and thus the utilization efficiency of land
resources and system benefits can be improved.

As comparison made in Fig. 11, DIMP can provide suitable
planting locations for seed and field corn, while the status quo can
hardly provide such information. More economic crop should be
planted to enhance the economic benefit of the agricultural system,
especially in south areas with high suitability and low evaporation.
DIMP results show that some areas should not be farmed when
attempting to improve the total value of ecosystem services and
ensure the grain output and economic benefits simultaneously.

Objective-value comparisons among these models have been
made in Fig. 12. The objective values of the GIMP model are be-
tween the upper and lower values of the three single objective
models, illustrating that the GIMP model can effectively manage
tradeoffs among resources, efficiency and ecological objectives. The
results can ensure current economic benefits and food security and
reduce the total water demand. The ecosystem service value of the
system can be increased by 0.36 � 108 CNY. These results will be
input to the GNFMP model for optimizing spatial water allocation.
4.3. Results analysis and discussion of DNFMP model

Based on GIMP results and necessary spatial information, opti-
mization results of monthly irrigation-water allocation can be
calculated through the GNFMPmodel as Fig. 13 shows. The red area
means that location has no irrigation-water allocation in the cur-
rent month, which mainly are the areas with no crop planted in the
GIMP model. The red area has a significant increasing trend in
August and September because the wheat has been harvested in
July. Results provide more detailed water allocation schemes of the
whole basin, which cannot be obtained by previous optimization
models. Regional managers can allocate the limited irrigation-
water based on optimization results obtained to improve water
use efficiency of the river basin.

To make comparisons with GNFMP results, three single-
objective models with objectives F1’, F2’, and F3’ separately as well
as the same constraints with GNFMP were created. The objective



Fig. 8. Monthly ET0 results on each grid for cultivated fields, 2014.

Fig. 9. VWC of each crop for each grid in 2014.

Y. Tang et al. / Journal of Cleaner Production 265 (2020) 121792 11
values of the GNFMP model, single-objective models, and current
situation are shown in Fig. 14. It is noteworthy that each single
objective model only obtain the best value in this objective, but
perform poorly on others. The multiobjective model can manage
tradeoffs among multiple objectives to obtain more reasonable
results. Compared with the current situation, the GNFMP model
improves the gross economic benefit of 24.17 � 108 CNY, increases
the irrigation-water productivity of 0.50 kg/m3, and reduces the
blue water utilization rate by 0.18, indicating that results of the
GNFMP model can effectively improve all objectives relative to the
current situation and will contribute to agricultural systems man-
agement in river basins.

5. Conclusions

This study proposed a RSM approach for managing agricultural
land and water resources in smaller spatial resolution. This
approach coupled several remote sensing data sets to generate



Fig. 10. Optimization results of spatial planting structure.

Fig. 11. Status quo of crop planting structure in 2014.

Fig. 12. The objective values of differe
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spatial downscaled data sets of GPM precipitation with the help of
the MLRR method. Spatial CWR and VWC results can be calculated
based on MOD16/PET data, PM mothed and virtual water theory.
After getting these spatial data sets, GIMPmodel and GNFMPmodel
were developed to generate optimal spatial crop planting structure
and irrigation-water allocation schemes respectively. Decision
makers can obtain more detailed spatial allocation schemes of
agricultural land and water resources in river basins through RSM.

The main conclusions are as follows.

(1) The MLRR method for downscaling the GPM data sets has
higher accuracy than LR, MLR, and IDW in precipitation
prediction. The MLRR results show the high spatiotemporal
variability in study area, which increased from north to
south. The obtained spatial VWC results show that high
spatiotemporal variability also exists in the ET and VWC, and
decreased from north to south.

(2) GIMP results can help managers determine which crop are
suitable for planting in all grids, and indicate that seed corn
has the greatest advantages and the largest planting area.
nt optimization models in GIMP.



Fig. 13. Irrigation-water allocation in each month.

Fig. 14. The objective values of optimization models and status quo for the study area.
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GIMP successfully managed tradeoffs among resources, ef-
ficiency, and ecological objectives, its results reduced the
total water requirements and increased the ecosystem ser-
vice value by 0.36� 108 CNY.

(3) The grid-based water allocation results obtained from
GNFMP effectively made tradeoffs among multiple objec-
tives. Compared with the status quo, it improved the gross
economic benefit by 21.85%, increased the irrigation-water
productivity by 25.92%, and reduced blue water utilization
rate by 24.32%.

RSM results can intuitively show the suitable crop planting type
and optimal irrigation-water allocation on each grid, which is more
practical for decision makers. The RSM approach proposed in this
research can not only improve the spatiotemporal resolution and
efficiency of agricultural systems, but also contribute to environ-
mental restoration in the middle and lower reaches of the Heihe
River. The study can also be applied to other similar regions. Some
key factors, such as soil water, irrigation facilities and technology,
regional policies haven’t been fully considered in this study. A
decision-making systemcanhelp thesemethodsmore accessible for
practical managers, which will be considered as our future work.
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Appendix I. Definitions of symbols used in DIMP and DNFMP
models.

Indices, Variables, Objective functions, and Parameters
Description.
Definition

Indices
N Index of grid (i ¼ 1,2, …,N)
I Index of crop (i ¼ 1,2, …,I)
T index of period (i ¼ 1,2, …,T)
max Superscript of maximum
min Superscript of minimum

Variables
mni The variables of whether to plant crops i for the grid n
Wnit Net water allocation to the crop i for the grid n in period t (mm)

Objective functions
F1 Objective functions for system crop growth suitability (dimensionless)
F2 Objective functions for spatial crop water requirements of system (m3)
F3 Objective functions for ecosystem service value (CNY)
F1’ Objective functions for gross economic benefits (CNY)
F2’ Objective functions for net irrigation-water productivity (kg/m3)
F3’ Objective functions for blue water utilization rate (dimensionless)

Parameters
hni Crop suitability of crop i for the grid n (dimensionless)
A Area for each grid (km2)
ETC nit Crop water requirement of crop i for grid n in period t (mm)
EPnt Effective precipitation for grid n in period t (mm)
EV Ecosystem service value (CNY)
FD Minimum grain demand per capital (kg/per capital)
PO Population
Bi Benefit per unit yield of crop i (CNY/kg)
Ci Actual crop yield per unit area of crop i (kg/m3)
CN Current net profit of study area (CNY)
Amin i Minimum planting area of crop i
Amax i Maximum planting area of crop i
ai Quadratic coefficient of crop water production function of crop i (dimensionless)
bi Primary coefficient of crop water production function of crop i (dimensionless)
ci Constant term of the crop water production function of crop i (dimensionless)
Qt Water supply for study area in period t (m3)
l Proportion of agricultural water utilization of study area (dimensionless)
ETmin nit Minimum water requirement for growth of crop i for grid n in period t (mm)
VWCB nit Blue water components of crop i for grid n in period t (mm)
VWCnit Virtual water content of crop i for grid n in period t (mm)
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